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Abstract—Abstract syntax tree (AST) mapping algorithms are
widely used to locate the code changes in a file revision by
mapping the AST nodes of the source code before and after
the code changes. A recent differential testing of three state-of-
the-art AST mapping algorithms, i.e., GumTree, MTDiff, and
IJM, reveals that the algorithms generate inaccurate mappings
for a considerable number of file revisions. We find that the
inaccurate mappings could be caused by the mutual influence:
the mappings of lower-level AST nodes (e.g., tokens) have impacts
on the mappings of higher-level AST nodes (e.g., statements) and
vice versa. This mutual influence issue is rarely considered by
existing algorithms.

In this paper, we propose an algorithm, called iASTMapper,
that iteratively map two ASTs based on the similarities between
AST nodes. Given a file revision, we extract three types of
AST nodes in different levels of program structures (i.e., tokens,
statements, and inner-statements) from the ASTs of the two
source code files. We first build mappings of the unchanged
statements and inner-statements. Then, we use an iterative
method to map the rest of the nodes without mapping. For
each of the three types of nodes, we iteratively map the nodes
based on their similarities measured using heuristic rules. We
further use an iterative mechanism to connect the three iterative
mapping processes by considering the mutual influence between
the mappings of different types of nodes. Finally, a series of
code edit actions are generated from the node mappings to help
users understand and locate the code changes during revisions.
We conduct experiments to compare iASTMapper with three
baselines, i.e., GumTree, MTDiff, and IJM, by automatically
evaluating 210,997 file revisions from ten Java projects. Fur-
thermore, we manually evaluate the correctness of the code edit
actions generated for 200 file revisions with 12 evaluators. The
results demonstrate that iASTMapper outperforms the baselines.
iASTMapper can generate shorter code edit actions by at least
1.29% than the baselines, with a high accuracy of 96.23%.

Index Terms—AST mapping, Code change analysis

I. INTRODUCTION

An abstract syntax tree (AST) mapping algorithm is used
to map the program elements (e.g., statements and tokens)
between two versions of a source code file, i.e., a file revision.
The algorithm converts the source code files before and after
a revision to ASTs and generate mappings of the nodes
between the ASTs by estimating the similarities of the nodes.

Based on the mappings, a series of AST edit actions can be
generated to describe the code changes in the file revision
in terms of AST nodes. The edit actions can be used for
many downstream program analysis tasks, such as mining code
change patterns [33] and automatic program repair [36].

Several AST mapping algorithms are proposed by re-
searchers, e.g., GumTree (GT) [2], MTDiff MTD) [3] and
IJM [4]. These algorithms aim to 1) maximize the number of
mapped AST nodes and 2) minimize the number of AST edit
actions. The number of mapped AST nodes can reflect the
mapping capability of an algorithm. If an algorithm generates
more AST node mappings, it has a higher probability of gen-
erating more accurate AST edit actions. The smaller number
of AST edit actions is, the less efforts are required by users to
understand the code changes. However, Fan et al. [5] reveal
that the three widely used AST mapping algorithms, i.e., GT,
MTD, and IJM, generate inaccurate mappings for 20%-36%
of the file revisions from ten Java projects. We further perform
an in-depth analysis of the inaccurate mappings and find that
the mappings of AST nodes in different levels of program
structures have mutual influence: the mappings of lower-level
nodes (e.g., tokens) can affect the mappings of higher-level
nodes (e.g., statements) and vice versa. This mutual influence
issue is rarely considered in the design of the algorithms.
Moreover, the description of AST edit actions requires users to
manually track the AST nodes involved in the actions. Thus,
AST edit actions might be challenging for users to use.

In this paper, we propose an algorithm, called iASTMapper,
that can iteratively map AST nodes based on the similarities
of nodes among two versions of an AST. Given a file revision,
we obtain the ASTs of both source code files and extract three
types of AST nodes in different structural levels: statements,
inner-statements, and tokens. A detailed introduction of these
nodes are presented in Section III-A. Then, we perform a
fast mapping of unchanged statements and inner-statements
between the two ASTs. After that, an iterative method is
used to associate the rest of nodes that are not mapped in
the prior step. For each of the three types of nodes, we
iteratively map the nodes in the same level by measuring



their similarities using a number of heuristic rules. We use
an iterative mapping mechanism for each type of node as we
observe that several rounds are needed to obtain a stable set of
mappings. Furthermore, we build another iterative mechanism
by connecting the three iterative mapping mechanisms. This
iterative mechanism is built based on the mutual influence
between the mappings of different levels of nodes. A series of
code edit actions are finally generated from the node mappings
to describe the code changes in terms of source code elements.
Compared with the traditional AST edit actions, code edit
actions are easier for users to read and understand without
the need of tracking the ASTs.

To evaluate iASTMapper, we collect 210,997 file revisions
of ten Java projects from GitHub. We conduct a large-scale
automatic evaluation of iASTMapper using state-of-the-art
baselines: GT, MTD, and IJM. iASTMapper increases the
number of AST node mappings by at least 25.18% compared
to the baselines and generates the shortest code edit scripts.
Moreover, 12 evaluators are recruited to assess the accuracy
of the code edit actions generated for 200 file revisions'.
iASTMapper achieves an accuracy of 96.23%, which outper-
forms GT, M, and MTD by 4.66%, 7.29%, and 24.62%,
respectively. We also validate the importance of the iterative
mechanisms applied in iASTMapper.

The contributions of this work are outlined below:

o We propose an iterative similarity-based AST mapping al-
gorithm, iASTMapper. It iteratively build the mappings of
three types of AST nodes using the similarities of nodes.
We propose heuristic rules for similarity measurements.

e We conduct a large-scale automatic evaluation and a
manual evaluation, which demonstrate the superiority of
iASTMapper to state-of-the-art AST mapping algorithms.

It is worthy to note that determining the optimal mapping
between two ASTs is a NP-hard problem. A trade-off exists
between the accuracy and efficiency of an AST mapping
algorithm. iASTMapper employs a number of heuristic rules
and an iterative algorithm to enhance the accuracy of AST
node mappings. However, it comes at the cost of efficiency,
especially when processing file revisions with large and/or
complex ASTs. Moreover, we elucidate the iASTMapper
procedure for analyzing Java file revisions. When applying
iASTMapper to file revisions written in other languages, two
configurations are necessary, namely 1) the selection of a
tool capable of generating ASTs for the revisions; and 2) the
definition of the three types of nodes (i.e., statements, inner-
statements, and tokens) in the ASTs.

II. PRELIMINARIES

Abstract Syntax Tree (AST). An AST is parsed from a
source code file to represent the source code in a tree structure.
It is composed of a set of nodes and a set of edges that
represent parent-child relationships between nodes. A node nq
is the parent of another node ny if ns is a child of n1. The node

'Our evaluation complies with the ACM Policy on Research Involving
Humans.

1 public synchronized void onMessage(Message message){
2 messages.add(message);

1 public void onMessage(Message message) {
2 synchronized(messages) {

3 synchronized(semaphore){ 3 messages.add(message);

4 semaphore.notifyAll(); messages.notifyAll();

5 ) Source 5} Target
6) File |6} File

(a) Partial code changes of ConsumerBean.java in the commit '7d4b446' of ActiveMQ.

[MethodDeclaration (n1)
[Modifier: public (n2)
[Modifier: synchronized (n3)
[PrimitiveType: void (nd) [SimpleName: onMessage (n29)
|SimpleName: onMessage (n5) [SingleVariableDeclaration (n30)
|SingleVariableDeclaration (n6) | [SimpleType (n31)
| [SimpleType (n7) | | ISimpleName: Message (n32)
| | ISimpleName: Message (n8) |  |SimpleName: message (n33)
| IsimpleName: message (n9) [Block (n34)

[Block (n10) |SynchronizedStatement (n35)
[ExpressionStatement (n11) |SimpleName: messages (n36)
| IMethodinvocation (n12) [Block (n37)
| [ExpressionStatement (n38)

| | ISimpleName: messages (n14) | IMethodinvocation (n39)

| |SimpleName: add (n15) [METHOD_INVOCATION_RECEIVER (n40)

|

|

[MethodDeclaration (n26)
[Modifier: public (n27)
[PrimitiveType: void (n28)

|METHOD_INVOCATION_RECEIVER (n13)

|METHOD_INVOCATION_ARGUMENTS (n16) | ISimpleName: messages (nd1)
|SimpleName: add (n42)
IMETHOD_INVOCATION_ARGUMENTS (n43)

|
|
|SimpleName: message (n17) |
[Synchronizedstatement (n18) |
|SimpleName: semaphore (n19) |
|Block (n20) I

| |SimpleName: message (n44)
ExpressionStatement (nd5)
|ExpressionStatement (n21) [Methodlnvocation (n46)
[Methodinvocation (n22) |METHOD_INVOCATION_RECEIVER (n47)
[METHOD_INVOCATION_RECEIVER (n23) | ISimpleName: messages (nd8)
| ISimpleName: semaphore (n24) Source |SimpleName: notifyAll (n49) Target
i notifyAll (n25) AST AST

(b) Partial ASTs generated for the source and target files.

Identical Mapping First Iteration Second Iteration

<n1, n26>
<n11, n38>

<n10, n34> <n18, n35>

<n20, n37> <n21, nd5> NULL

Statement Mappings

<n13, n40> <n16, n43>
<n22, n46>

<n6, n30> <n7, n31>
<n23, n47>

Inner-statement

Mappings <n12, n39>

<n2, n27> <n4, n28>
<n5, n29> <n8, n32>
<n9, n33> <n19, n36>
<n24, 48> <n25, n49>

<n14,n41>
<n15, n42>
<n17, nd4>

Token Mappings NULL

### Statement Edit Actions:
ine:1), MethodD: 1))
Line:2), ine:
ine:3), i ine:2))

del(n3) ### Inner.statement Edit Actions:
mov(n11,n35,1)
upd(n19,messages)
upd(n24,

Line:4, Index:o-1), ine:4, Index:0-1))
upd(METHOD_INVOCATION_RECEIVER(Line:4, Index:0-0), METHOD_INVOCATION_RECEIVER(Line:4, Index:0-0))
#it# Token Edit Actions:
Line:1, Index:1))

1), ine:2, Index:1)
upd(semaphore(Line:4, Index:0), messages(Line:4, Index:0))

(c) The AST node mappings of three types of nodes built during multiple iterations (above table), AST edit actions (left
below), and code edit actions (right below) generated using iASTMapper.

Fig. 1. Example of the ASTs, AST node mappings, AST edit actions, and
code edit actions generated by iASTMapper.

that has no parent is called the root node. A node that has no
child is called a leaf node. For a node, the nodes along the path
(connected by edges) to the root node are called its ancestors,
and the node is called their descendant. Each node represents
a code element with a label (e.g., MethodDeclaration)
to indicate its type. Some nodes have a value (e.g., public)
to indicate the corresponding tokens of the element.

AST mapping algorithms. An AST mapping algorithm
maps the nodes between two ASTs: a source AST parsed
from the source code file before code changes (referred to
as source file) and a target AST parsed from the source code
file after code changes (referred to as target file). The key is
to measure the similarities between the nodes from the two
ASTs to determine whether two nodes can be mapped or not.
Only the nodes with the same label can be mapped. A node
mapping can be represented as (ng,n;), where ng is a node
in the source AST, and n; is a node in the target AST.

AST edit actions. A series of AST edit actions can be
generated from the mappings of AST nodes to describe the
process of transforming the source AST to the target AST.
Existing AST mapping algorithms, e.g., GT, MTD, and IJM,
often use Chawathe et al.’s algorithm [12] to calculate the AST
edit actions. There are four types of AST edit actions:

o upd(n,v) replaces the value of the node n with v.
e add(n,p,i) adds a node n as the i** child of the node
p if p is not null. Otherwise, n is added as the new root
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Fig. 2. An overview of the framework of iASTMapper.

node.

o del(n) deletes the leaf node n.

o mov(n,p,i) moves the node n with the subtree rooted at
n as the i*" child of the node p.

Fig. 1(a) shows partial code changes of ConsumerBean.java
from the commit ‘7d4b446’ of the Java project ActiveMQ.
Fig. 1(b) shows the two ASTs generated for the source code
before and after the code changes. In Fig. 1(c), the above table
presents the mappings of three types of AST nodes generated
during the identical mapping step and the iterative mapping
process by iASTMapper. The two synchronized statements,
i.e., n1g in the source AST and ns; in the target AST, are
mapped in the first iteration. The left below part of Fig. 1(c)
lists the four AST edit actions, e.g., del(ng), generated from
the AST node mappings using Chawathe et al’s algorithm.

III. APPROACH

Figure 2 shows the overview framework of iASTMapper.
Given a file revision that contains two source code files: a
source file before code changes and a target file after code
changes, iASTMapper generates the AST node mappings and
code edit actions using six steps (1) - (6) . For each source
code file, we generate its AST and extract three types of nodes:
statements, inner-statements, and tokens. Then, we perform a
mapping of the statements and inner-statements identical in
both ASTs. Next, the unmapped nodes are mapped using an
iterative similarity-based method. Finally, a series of code edit
actions are generated from the mappings to describe the code
changes happened in the file revision.

A. AST Node Extraction

For each of the source file and the target file of a Java file
revision, we generate a standard AST using the Eclipse JDT
parser and extract three types of AST nodes as follows.

Tokens. We extract tokens from the AST nodes that have a
value. We ignore the AST nodes representing comments and
Javadocs as they are typically not treated as code. Given the
source AST shown in Fig. 1(b), 12 tokens are extracted, i.e.,
the nodes marked in blue, e.g., ny-ns.

Statements. We extract statements from the AST nodes
corresponding to a statement in the source code. In Java,
we identify two types of statements: 1) a statement ends
with a semicolon ‘;’, e.g., a variable declaration statement;
and 2) a statement ends with a left curly brace ‘{’, e.g., a
method declaration statement. Given the source AST shown
in Fig. 1(b), six statements are extracted, i.e., the nodes marked
in black, e.g., ni. The Block nodes, e.g., nqg, are viewed as
a specific type of statement. Note that a statement may have
descendant statements, e.g., a method declaration statement
may contain expression statements. We obtain the value of
a statement by grouping the values of its descendant nodes
(except the descendant statements). The value of n; is ‘public
synchronized void onMessage Message message’.

Inner-statements. We extract inner-statements from the
AST nodes under an AST node corresponding to a statement,
except the AST nodes corresponding to tokens. The value of
an inner-statement is obtained by grouping the values of its
descendant nodes. Given the source AST shown in Fig. 1(b),
seven inner-statements are extracted, i.e., the nodes marked in
magenta, e.g., ng. The value of ng is ‘Message message’.

We name the three types of nodes using their corresponding
program elements in source code. When mentioning a type of
node or element, we do not explicitly express them, e.g., token
nodes, if there is no ambiguity based on the context.

B. Identical Mapping

We analyze the changed code lines of 210,997 file revisions
from ten Java projects and find that in total there are only
4.43% of the code lines changed, as listed in Table II. The large
amount of unchanged code can be easily mapped between the
two versions of ASTs and thus greatly reduce the amount of
code that needs to be mapped using our iterative similarity-
based method (see Section III-C). We use the following
two substeps to map the unchanged statements and inner-
statements extracted from the source and target ASTs.

1) Identical Statement Mapping: Two statements are iden-
tical if they have the same value. In particular, in a Java
file, each method has a unique signature that includes the
method name and the list of parameter types. Therefore, for



1 | ObjectName name = new
ObjectName("org.apache.activemq:type=Broker,brokerName=localhost"); ~

2 | BrokerViewMBean brokerMbean = (BrokerViewMBean) MBeanServerlnvocationﬁnndler Source
.newProxylnstance(connection, name, BrokerViewMBean.class, true); . 7 File

1 | ObjectName brokerViewMBean = new ObjectName( €-- 2c® g
"org.apache.activemq:type=Broker,brokerName=localhost");

2 | BrokerViewMBean proxy = (BrokerViewMBean) broker.getManagementContext() Target
.newProxyInstance(brokerViewMBean, BrokerViewMBean.class, true); File

Fig. 3. An identical inner-statement mapping generated for partial code
changes of AdvisoryJmxTest.java from the commit ‘0683d8b’ of ActiveMQ.

two method declaration statements (e.g., the nodes 1 and nag
shown in Fig. 1(b)), they are identical if they have the same
signature. We map a statement, s;, from the source AST to a
statement, s;, from the target AST if 1) s; and s; are identical;
2) s; has no other identical statements except s; in the target
AST; and 3) s; has no other identical statements except s;
in the source AST. That is, we require a one-to-one mapping
between two identical statements to ensure a high accuracy
of mapping. For a pair of mapped statements, we further
map the tokens (resp. inner-statements) at the same position
(resp. position range) in both statements. If a statement has
multiple identical statements, then it is hard to determine
which identical statement should be mapped to the statement,
without additional context information. We subsequently use
an iterative similarity-based method to address this problem.

2) Identical Inner-statement Mapping: In spite of the
inner-statements mapped above, we map other identical inner-
statements that have the same value but belong to non-identical
statements, as shown in Fig. 3. We also require a one-to-one
mapping between two identical inner-statements to ensure a
high accuracy of mapping. Since there can be a large number
of inner-statements along the path from each statement to the
leaf tokens, it is time-consuming to compare and map all inner-
statements. We can map the relatively long inner-statements
that have no less than § descendant tokens. In this work, we
set § = 5. For a pair of mapped inner-statements, we further
map the tokens (resp. inner-statements) at the same position
(resp. position range) in both inner-statements.

We randomly sample 383 identical statement mappings
and 383 identical inner-statement mappings generated for
the file revisions from ten projects, which are statistically
significant sample sizes considering a confidence level of 95%
and a confidence interval of 5%. The first two co-authors
independently examine the correctness of each mapping and
label the correct mappings with ‘1°, otherwise ‘0’. From both
co-authors’ results, the mappings are all correct, indicating that
both types of identical mappings have a high accuracy.

C. Iterative Similarity-based Mapping

After the identical mapping step, we obtain a set of pairs of
mapped nodes, M, a set of unmapped nodes from the source
AST, UM, and a set of unmapped nodes from the target AST,
UM;. We use an iterative similarity-based method to map the
nodes in UM and U M. As shown in Fig. 2, the method has
an iterative mapping mechanism for each of the three types of

1 protected void addTestInformation(PrintWriter writer){

2 if (this.getTestSettings() = null) {

3 while (keys.hasMoreElements()) {

4 |- key = (String) keys.nextElement(); &+ < -
} AY

~
~

} PR s
ource
} X O :
\ File
'
5 protected void addTestIinformation(PrintWriter writer){ \,
6 while (keys.hasMoreElements()){ e 4 1y
7+ key = (String) keys.nextElement(); ’I
} .
8 if (this.getTestSettings() != null){ o
9 while (keys.hasMoreElements()){ - s
10 |+ key = (String) keys.nextEIement();A
}
} Target
} File

Fig. 4. Illustration of the rule ANCE using partial code changes of PerfRe-
portGenerator.java from the commit ‘e8b3bdb’ of ActiveMQ.

nodes and another iterative mechanism that connects the three
iterative mapping processes.

1) Iterative Statement Mapping: This step maps the state-
ments in UM to the statements in U/ M. For each statement
s; € UMy, we collect the statements with the same label as s;
in U M;. Such statements are to be mapped to s; as only the
statements with the same label, e.g., MethodDeclaration,
can be mapped. After collecting the candidates for all state-
ments in UM, we strive for mapping a statement to one of
its candidates based on the similarities measured using the
following five heuristic rules.

IDEN characterizes whether two statements are identical.
This rule is to deal with the identical statements that have
not been mapped in the identical mapping step. The IDEN
between two statements is 1 if they are identical, otherwise 0.

ANCE is defined as the sum of the path lengths between two
statements and their closest ancestor statements that have been
mapped in the ASTs. Given two statements s; and s; and the
pair of their closest mapped ancestor statements (as;, as;), we
compute the path length between s; and its ancestor statement
as; and the path length between s; and as;. Then, we compute
ANCE as the sum of both path lengths. The smaller the ANCE
is, the more likely s; and s; can be mapped, which can be
viewed as the principle of proximity. In Fig. 4, there are three
pairs of mapped statements: (line 1, line 5), (line 2, line 8),
and (line 3, line 9), so that the ANCE between line 4 and line
7 is 82, and the ANCE between line 4 and line 10 is 2. Thus,
line 4 and line 10 are more likely to be mapped.

IMSR is defined as the ratio of the identical or mapped
descendant statements of two statements. For two statements
s; and s, we compute IMSR as % where imds()
obtains the set of the identical/mapped descendant statements
of two statements, and ds() obtains the set of descendant
statements of a statement. The larger the IMSR is, the more
likely s; and s; can be mapped. In Fig. 5, there are three
method declaration statements. The IMSR between line 1 and

2There are three Block nodes, e.g., n1o in Fig. 1(b), generated for each {...}
between the two statements and their closest mapped ancestor statements.



TABLE I
THE FREQUENCIES OF TEN HEURISTIC RULES APPLIED TO THE FILE REVISIONS OF TEN JAVA PROJECTS.

[ Rule [ IDEN

[ ANCE | IMSR | IMTR | S-ABS | ILMSIS | IMIR | I-ABS | T-MSIS | T-ABS |

[Fequency | 135,059 | 47,619 | 29,395 | 20,095 | 13,467 | 202,736 | 151,013 | 39,935 | 80,16

[ 55675 |

- public void testToCalendarWithTimeZone() { _ _ -
assertEquals("Convert Date and TimeZone to a CalendaF = = I~
but failed to get the TimeZone back", zone, S USo
DateUtils.toCalendar(date1, zone).getTimeZone()); ‘, h
try { I *
DateUtils.toCalendar(date1, null); ’ \
fail("Expected NullPointerException to be thrown"); X
} catch(final NullPointerException npe) { . '
/I expected 4

1
} L 1Y Source
} . ! File
- +
2 |+ public void testToCalendarWithTimeZoneNotNull() { | 2 ’
assertEquals("Convert Date and TimeZone to a Calendar, ’

but failed to get the TimeZone back", zone, s
DateUtils.toCalendar(date1, zone).getTimeZone()); -

) -
3 |+ public void testToCalendarWithTimeZoneNull() { €= = ~
try {
DateUtils.toCalendar(date1, null);
fail("Expected NullPointerException to be thrown when TimeZone is null");
} catch(final NullPointerException npe) {
1l expected
Target
} File

Fig. 5. Illustration of the rule IMSR using partial code changes of DateUti-
IsTest.java from the commit ‘d9a2c69’ of Commons-Lang.

Source

1 context.addServlet(commonsResolverServlet, "/commons-resolver/*"); ~ o _ File
S~ AV4
= X

= -

2 |+ handler.addServiet(commonsResolverServlet, "/commons-resolver/*"); 4~ _ . Target
3 |+ handler.addServiet(standardResolverServlet, "/standard-resolver/*'); 4= File

Fig. 6. Illustration of the rule IMTR using partial code changes of Request-
PartIntegrationTests.java from the commit ‘529e629” of Spring-Framework.

line 2 is 0.33, and the IMSR between line 1 and line 3 is 0.88.
Thus, line 1 and line 3 are more likely to be mapped.

IMTR is defined as the ratio of the identical or mapped
descendant tokens of two statements. The statements shar-
ing more identical/mapped tokens are more likely to be
mapped. We compute IMTR between two statements s; and
s as % where imts() obtains the set of iden-
tical/mapped descendant tokens of two statements, and ¢s()
returns the set of descendant tokens of a statement. In Fig. 6,
the IMTR between line 1 and line 2 is 0.75, and the IMTR
between line 1 and line 3 is 0.25. Thus, line 1 and line 2 are
more likely to be mapped.

S-ABS characterizes whether the nearest above and the near-
est below sibling statements of two statements are mapped. A
statement often has sibling statements, e.g., the statements in
the body of a method are siblings. The S-ABS between two
statements can be: 1) O when neither the nearest above nor
the nearest below siblings are mapped; 2) 1 when either the
nearest above or the nearest below siblings are mapped; and 3)
2 when both the nearest above and the nearest below siblings
are mapped. The larger the S-ABS is, the more likely the two
statements can be mapped.

We use the five rules in the order of IDEN—ANCE—
IMSR—IMTR—S-ABS based on their frequencies (i.e., the

numbers of file revisions to which the rules can apply) in the
file revisions from ten Java projects (see Table II), as listed
in Table I. For each rule, we measure the similarities between
the statements in U/ M and their candidates. Then, we map
statement s; to one of its candidate s; if they achieve the
unique optimal similarity among 1) the similarities between
s; and its candidates and 2) the similarities between s; and
the statements in /M, that have s; as a candidate. In other
words, we require that two mapped statements must be the
only best match among all the candidates for each other to
ensure a high accuracy of mapping. After the pair of (s;, s;)
is mapped, we add it to the global set of mapped nodes M,
remove s; from the candidates of all statements in UM,
and remove s; and s; from UM, and UM,, respectively.
If s; has multiple candidates with the optimal similarities, the
candidate that should be mapped to s; cannot be determined.
Such candidates are further mapped to s; using the next rule.

After going through a round of the five rules, if there
are new statement mappings generated and there are still
unmapped statements in &/ M, another round of the rules is
applied since the new statement mappings may provide useful
information for generating more statement mappings. Specifi-
cally, the new statement mappings may affect the similarities
measured using the three rules ANCE, IMSR, and S-ABS.
Based on the updated similarities, it is possible that some
statements can be mapped. We iteratively perform several
rounds of the five rules following the same order until no
new statement mappings are generated.

2) Iterative Inner-statement Mapping: This step maps the
inner-statements in /M, to the inner-statements in U M;.
For each inner-statement is; € UM, we collect the inner-
statements with the same label as ¢s; in /M. Such inner-
statements are to be mapped to is; as only two inner-
statements with the same label, e.g., MethodInvocation,
can be mapped. After collecting the candidates for all inner-
statements in /Mg, we want to map an inner-statement to
one of its candidates based on the similarities measured using
the following three heuristic rules.

I-MSIS characterizes whether two inner-statements belong
to a pair of mapped statements or inner-statements. The
I-MSIS between two inner-statements is 1 if their parent
statements/inner-statements are mapped, otherwise 0.

I-IMTR is defined as the ratio of the identical or mapped
descendant tokens of two inner-statements. This rule is similar
to the rule IMTR used for iterative statement mapping.

I-ABS characterizes whether the nearest above and the
nearest below sibling inner-statements or tokens are mapped.
In a statement, the inner-statements or tokens that do not
overlap are siblings. This rule is similar to the rule S-ABS
used for iterative statement mapping.



We follow the order of I-MSIS—I-IMTR—I-ABS to use the
three rules according to their frequencies of application listed
in Table I. For each rule, we measure the similarities between
the inner-statements in /M and their candidates. We map
inner-statement s, to one of its candidate is; if their similarity
is the unique optimal among 1) the similarities between is; and
its candidates and 2) the similarities between ¢s; and the inner-
statements in /M that have is; as a candidate. That is, we
require that two mapped inner-statements must be the only best
match among all the candidates for each other to ensure a high
accuracy of mapping. After the pair of (is;, is;) is mapped, we
add it to the global set of mapped nodes M, remove is; from
the candidates of all inner-statements in /M, and remove is;
and is; from UM, and UM, respectively. If is; has multiple
candidates with the optimal similarities, we cannot determine
the candidate to be mapped to is;. Such candidates are mapped
to ¢s; using the next rule.

After applying a round of the three rules, if there are new
inner-statement mappings generated and there are still un-
mapped inner-statements in 4/ M, another round of the rules
is applied since the new inner-statement mappings may pro-
vide useful information for generating more inner-statement
mappings. Specifically, the new inner-statement mappings may
affect the similarities measured using the two rules I-MSIS
and I-ABS. Some inner-statements may be mapped due to
the updated similarities. We iteratively perform the three rules
following the same order for several rounds until there are no
new inner-statement mappings generated.

3) Iterative Token Mapping: This step maps the tokens
in UM to the tokens in U/ M;. For each token t; € UM,
we collect the tokens with the same label as t; in UM; as
candidates to be mapped to ¢;. After collecting the candidates
for all tokens in UM, we try to map a token to one of
its candidates based on the similarities measured using the
following two heuristic rules.

T-MSIS characterizes whether two tokens belong to a pair
of mapped statements or inner-statements. This rule is similar
to the rule I-MSIS used for iterative inner-statement mapping.

T-ABS characterizes whether the nearest above and the
nearest below sibling tokens of two tokens are mapped. The
tokens in a statement are siblings. This rule is similar to the
rule S-ABS used for iterative statement mapping.

We apply the two rules following the order of T-MSIS—T-
ABS based on their frequencies of application listed in Table I.
For each rule, we measure the similarities between the tokens
in UM, and their candidates. We map token ¢; to one of
its candidate ¢; if they achieve the unique optimal similarity
among 1) the similarities between ¢; and its candidates and 2)
the similarities between ¢; and the tokens in L/ M that has ¢,
as a candidate. That is, two mapped tokens must be the only
best match among all the candidates for each other to ensure a
high accuracy of mapping. After the pair of (¢;,t;) is mapped,
we add it to the global set of mapped nodes M, remove t;
from the candidates of all tokens in UM, and remove t;
and ¢; from UM, and UM, respectively. If ¢; has multiple
candidates with the optimal similarities, the candidate that

should be mapped to ¢; cannot be determined. Such candidates
are mapped to t; using the next rule.

After performing a round of both rules, if there are new
token mappings generated and there are still unmapped tokens
in UM, another round of the rules is applied since the new
token mappings may provide useful information for generating
more token mappings. Specifically, the new token mappings
may affect the similarities measured using T-LRS, and thus
some tokens may be further mapped. We iteratively perform
the two rules following the same order for several rounds until
no new token mappings are generated.

4) Outer Iteration Between Three Inner Iterative Mapping
Processes: Based on our analysis, the mappings of higher-
level nodes, e.g., statements (resp. inner-statements), have
impacts on the mappings of lower-level nodes, e.g., inner-
statements (resp. tokens), and vice versa, which are reflected
by the heuristic rules IMTR, I-MSIS, I-IMTR, I-ABS, and T-
MSIS. As shown in Fig. 2, we build an outer iteration between
the three inner iterative mapping processes by connecting the
iterative token mapping step to the iterative statement mapping
step. After an iterative token mapping process is finished, if
there are new token mappings generated, we go back to the
iterative statement mapping step.

D. Code Edit Action Generation

We generate a series of code edit actions from the three
types of mapped and unmapped nodes to describe the code
changes in the file revision. Our code edit actions describe
code changes in terms of source code elements (i.e., state-
ments, inner-statements, and tokens) and can be understood
by users without tracking the nodes in the source and target
ASTs. Specifically, we define seven types of code edit actions:

o del(e) deletes the element e.

e add(e) adds an element e.

o upd(es,e;) replaces the element e, with an element e;.

« mov(eg, e;) moves the element e, to the position of the

element e;. e, and e; have different parents in the ASTs.

o exc(es, e;) moves the element ey to the position of the

element e;. e and e; have the same parent but their
relative orders are different in the ASTs.

o m&ules,er) combines mov(es, e;) and upd(es, ;).

o e&u(es, e;) combines exc(eg, e;) and upd(es, e;).

To generat the code edit actions, we extend the set of pairs of
mapped elements, M. For each unmapped element e; € UM,
we add (e;,null) to M. For each unmapped element e; €
UM, we add (null, e;) to M. For each pair of (e;,e;) € M,
we generate code edit actions as follows.

o del(e;) if e; is null.

o add(e;): if e; is null.

o upd(e;,e;) if e; and e; are not identical.

o mou(e;, e;) if the parents of e; and e; are not mapped.

o exc(e;,e;) if the parents of e; and e; are mapped but

their relative orders in the parents are changed.

o m&u(es,e;) if both upd(e;,e;) and mov(e;,e;) are

generated from (e;, e;), then we replace the two actions
with a compound action m&u(e;, €;).



TABLE II
DESCRIPTIVE STATISTICS OF TEN JAVA PROJECTS.

. . #File . #Changed
Project ‘ #Commits Revisions #Code Lines Code I%ines
ActiveMQ 8,066 24,821 21,531,689 708,309(3.29%)
Commons-I0 1,067 2,726 3,010,133 108,763(3.61%)
Commons-Lang 3,032 6,915 14,866,513 323,419(2.18%)
Commons-Math 4,239 18,120 15,206,867 622,995(4.10%)
Hibernate-ORM 10,158 51,642 41,001,030 1,584,700(3.87%)
Hibernate-Search 5,368 26,865 11,362,103 495,213(4.36%)
Junit4 1,241 3,802 29,076,733 1,211,965(9.89%)
Netty 11,138 39,778 55,596,221 2,396,919(4.17%)
Spring-Framework | 4,112 16,434 10,199,157 546,461(5.36%)
Spring-Roo 4274 19,894 12,169,842 1,350,164(11.09%)
Total 52,695 210,997 159,620,332 7,070,286(4.43%)

o e&ule;, e;) if both upd(e;, e;) and exc(e;, e;) are gener-
ated from (e;, e;), then we replace the two actions with
a compound action e&u(e;, e;).

Given the partial code changes shown in Fig. 1(a),
1ASTMapper finally generates nine code edit actions related
to four statements, two inner-statements, and three tokens, as
shown in the right below part of Fig. 1(c). For example, the
statement edit action upd(MethodDeclaration(Line:l),
MethodDeclaration(Line:1)) implies that the method
declaration statement in line 1 of the source file is updated
to the method declaration statement in line 1 of the target file.
To factilitate understanding of the actions, we present the line
numbers and indexes of the elements in each action.

IV. EVALUATION

In this section, we evaluate iASTMapper by answering
three research questions. After describing the experimental
dataset, we present the answer to each research question. Our
experimental environment is a desktop PC with Intel Core i5-
10500 CPU, 16G RAM, and Windows 10 Operating System.

We download ten open-source Java projects from GitHub.
These projects are analyzed in prior studies [4], [5]. For each
project, we collect the commits and the file revisions involved
in the commits. For each file revision, we count the lines of
code (LOC) of the two source code files and also count the
code churns, i.e., changed code lines, in both files. Then, we
count all code lines and all changed code lines in the file
revisions of a project and compute the percentage of changed
code lines. Table II lists the statistics of the ten projects. In
total, there are 52,695 commits and 210,997 file revisions.

A. RQI: How effective is iASTMapper compared with state-
of-the-art AST mapping algorithms?

Motivation. We want to quantitatively evaluate the perfor-
mance of iASTMapper by comparing it with state-of-the-
art AST mapping algorithms on a large-scale dataset of file
revisions.

Approach. We select three AST mapping algorithms widely
used in prior studies as our baselines, namely

o« GumTree (GT) [2] uses two phases to map the nodes

between the source and target ASTs. In the first phase,

a greedy top-down algorithm is used to map identical

subtrees. In the second phase, a bottom-up algorithm is

used to map the nodes that share a significant number
of mapped descendants. After that, GT tries to map the
unmapped descendants of those nodes.

o« MTDiff (MTD) [3] first removes unchanged subtrees
from the ASTs using an identical subtree optimization.
Then, MTD maps AST nodes using the ChangeDistiller
algorithm [12]. Another four optimizations are used to
find additional node mappings.

e IJM [4] is an AST mapping algorithm for Java programs.
IJM first reduces the ASTs by pruning many name nodes?
and merging the value of each pruned node to its parent
node. Then, IJIM splits the ASTs into parts along each
declaration and maps AST nodes from the parts using an
adaptation of the GT algorithm. The adaptation evaluates
the similarity of node values when mapping two nodes.

For each file revision of the ten projects, we use the Eclipse
JDT parser to generate ASTs for the source file and target
file. Then, we use GT, MTD, and iASTMapper to map nodes
between the two ASTs, respectively. For IJM, the ASTs are
reduced using the AST reduction algorithm proposed in IJM.
Then, we use IJM to map nodes between the reduced ASTs. To
compare iASTMapper and IJM, we also apply iASTMapper to
the reduced ASTs. We refer to the modified iASTMapper that
uses the reduced ASTs as iASTMapper(IJM-AST). Note that
all these algorithms fail to analyze 134 file revisions because
of errors happened when extracting information from the
revisions using Git operations. Using the AST node mappings
generated by each algorithm, we produce a series of AST edit
actions using Chawathe et al.’s algorithm [12] and also produce
a series of code edit actions using our algorithm described in
Section III-D.

We automatically evaluate the algorithms using three met-
rics: 1) #AST Node Mappings: measures the number of AST
node mappings, which can reflect the mapping capability of an
algorithm to a certain degree. The larger number of mapped
AST nodes is, the higher possibility that the algorithm can
generate more accurate AST edit actions; 2) AST Edit Script
(ES) Size: calculates the number of AST edit actions, which is
used as an indicator of the cognitive efforts required by users
to understand the code changes. The larger size of the AST
edit script is, the more efforts are required; and 3) Code Edit
Script (ES) Size: computes the number of code edit actions.
As explained in Section III-D, code edit actions are proposed
in this work to overcome the drawback of AST edit actions. A
larger code edit script also requires more efforts to understand.
#AST Node Mappings and AST ES Size are widely used in
the automatic evaluations of AST mapping algorithms [2]-[4],
while Code ES Size is proposed in this work.

For an algorithm, A, we measure the value of a metric, m,
for each file revision, r, which is denoted as m,.(A). Next, we
measure the increased or decreased degree of iASTMapper
over each of the other four algorithms, e.g., B, in terms of m

3Name nodes, e.g., the node ns in Fig. 1(b), are children of various other
nodes like method or type declarations. A name node contains the name (e.g.,
a method or type name) of its parent node as its value.



THE TOTAL RESULTS GENERATED FOR THE FILE REVISIONS OF TEN JAVA PROJECTS USING FIVE ALGORITHMS. THE PERCENTAGE IN A CELL REPRESENTS

TABLE III

THE INCREASED (‘+’) OR DECREASED (‘-’) DEGREE OF IASTMAPPER OVER THE CORRESPONDING ALGORITHM.

[ [ iASTMapper | iASTMapper(IJM-AST) [ GT [ MTD [ IIM ]
#AST Node Mappings | 495,686,699 390,840,846(+26.83%) 395,359,204(+25.38%) | 395,975,927(+25.18%) | 376,977,471(+31.49%)
AST ES Size 14,281,762 9,528,528(+49.88 %) 14,335,399(-0.37 %) 16,775,546(-14.87 %) 10,222,981(+39.70%)
Code ES Size 2,627,196 2,652,314(-0.95%) 2,661,412(-1.29%) 2,807,658(-6.43%) 2,798,826(-6.13%)

TABLE IV
STATISTICS OF THREE METRICS ACHIEVED BY FIVE ALGORITHMS. ‘P’ STANDS FOR ‘PERCENTILE’.
\ [Min | Max | Mean | Std | P25 [ P50 | P75 | P95 |

GT 1 54,095 1,874.96 | 3,150.75 | 342.00 | 821.00 2,022.00 | 7,177.00
MTD 7 54,095 1,877.88 | 3,152.29 | 344.00 | 823.00 2,026.00 | 7,182.00

#AST Node Mappings | IJM 7 53,395 1,787.78 | 3,040.26 | 318.00 | 772.00 1,920.00 | 6,867.00
iASTMapper(IJM-AST) | 4 55,761 1,853.53 | 3,160.13 | 330.00 | 801.00 1,989.00 | 7,106.00
iASTMapper 4 66,996 | 2,350.75 | 4,031.15 | 411.00 | 1,008.00 | 2,528.00 | 9,093.00
GT 0 22816 | 67.98 239.06 4.00 14.00 51.00 279.00
MTD 0 22,880 | 79.56 259.75 4.00 16.00 61.00 335.00

AST ES Size M 0 15,659 | 48.48 172.98 3.00 10.00 37.00 196.00
iASTMapper(IJM-AST) | 0 15,638 | 45.19 154.08 3.00 10.00 35.00 183.00
iASTMapper 0 22,788 | 67.73 234.43 4.00 14.00 51.00 279.00
GT 0 2,380 12.62 35.61 2.00 4.00 11.00 49.00
MTD 0 2,351 13.32 36.51 2.00 4.00 12.00 52.00

Code ES Size IJM 0 2,455 13.27 39.08 2.00 4.00 11.00 52.00
iASTMapper(IJM-AST) | 0 2,372 12.58 33.96 2.00 4.00 11.00 49.00
iASTMapper 0 2,382 12.46 34.02 2.00 4.00 11.00 48.00

E'f'ER m,,w(iASTJLIapper)—ZTER m,.(B)
] 2 rermr(B)
entire set of file revisions.

as

, where R denotes the

Results. iASTMapper outperforms state-of-the-art AST
mapping algorithms, i.e., GT, MTD, and IJM, in terms of
#AST Node Mappings and Code ES Size. Table III presents
the automatic evaluation results. iASTMapper generates the
maximum number of AST node mappings, which increases
25.38%, 25.18%, and 31.49% by comparing with GT, MTD,
and IJM, respectively. This result shows that iASTMapper has
a more powerful capability to map AST nodes. Moreover,
iASTMapper generates the minimum size of code edit scripts,
which decreases the size by 1.29%, 6.43%, and 6.13% in
comparison with GT, MTD, and IJM, respectively. The shorter
code edit scripts generated by iASTMapper for file revisions
can reduce the burden for users to understand code changes.
In terms of AST ES size, iASTMapper is better than MTD,
very close to GT, but worse than IJM. The worse result
is caused by the fact that IJM reduces the standard ASTs
by removing many name nodes and thus does not generate
mappings of those nodes, which contributes to smaller sizes of
AST edit scripts. However, the modified iASTMapper that uses
the reduced ASTs, iASTMapper(IIM-AST), generates smaller
sizes of AST edit scripts than IJM, which shows the superiority
of iASTMapper over IIM. Although iASTMapper(IJM-AST)
generates smaller sizes of AST edit scripts than iASTMapper,
iASTMapper generates smaller sizes of code edit scripts than
iASTMapper(IIM-AST). This result indicates that the reduced
ASTs has negative impacts on the generation of code edit
scripts, for the following reason. Some of the removed name
nodes may be necessary to generate concise code edit actions,
e.g., the compound actions m&wu and e&wu (see Section III-D);
and removing such nodes lead to more code edit actions.
Table IV further presents several statistics of the three metric

values obtained by the five algorithms for all file revisions.
Note that for each algorithm, both the minimum AST ES Size
and the minimum Code ES Size are 0, while the minimum
#AST node mappings is not 0. This discrepancy arises from
some file revisions where the source file and target file possess
identical content. An example can be found in the case of the
BrokerService.java of the commit ‘ba6e62c’ from ActiveMQ.
Moreover, we observe two prevalent trends in the metric values
produced by the algorithms, namely: 1) The metric values
exhibit a large range from O or below ten to thousands or
tens of thousands; and 2) The majority of metric values fall
within a confined range, e.g., the code ES sizes generated by
iASTMapper for 95% of the revisions are no more than 48.

B. RQ?2: Is it important to apply the iterative mechanisms in
iASTMapper?

Motivation. In iASTMapper, we apply two types of iterative
mechanisms, i.e., the three inner iterative mechanisms used
for mapping each of the three types of nodes and the outer
iterative mechanism that connects the inner iterative mapping
mechanisms. We want to investigate the importance of the
inner and outer iterative mechanisms to iASTMapper.

Approach. To separately study the importance of the inner and
outer iterative mechanisms, we implement two simplified vari-
ants of iASTMapper: 1) iASTMapper-Inner which removes
the three inner iterative mechanisms and applies one round
of the heuristic rules (e.g., IDEN) to map each of the three
types of nodes; and 2) iASTMapper-Outer which removes
the outer iterative mechanism by disconnecting the iterative
token mapping step from the iterative statement mapping step.

We randomly sample 50 file revisions. For each file revision,
we use iASTMapper and both variants to generate the AST
node mappings. Then, we generate AST edit actions and



TABLE V
COMPARISON OF IASTMAPPER AND ITS TWO VARIANTS.

#AST Node | AST Code #Correct Code Edit

Mappings ES Size | ES Size | Actions (Accuracy)
iASTMapper 114,700 1,451 337 332(98.52%)
iASTMapper-Inner | 112,145 6,325 1,089 280(25.71%)
iASTMapper-Outer | 113,589 4,091 345 324(93.91%)

code edit actions from the mappings. The first two co-authors
who have five and 11 years of Java programming experience,
respectively, manually evaluate the correctness of 1,165 code
edit actions of statements generated for the file revisions by
the three algorithms. Note that we do not evaluate the code
edit actions of inner-statements and tokens for two reasons:
1) Statements are the basic building blocks for programming.
The changes of statements provide more concise summary of
the code changes; and 2) There are 1,740 code edit actions of
inner-statements and 4,577 code edit actions of tokens, which
could significantly increase the evaluation efforts. Both co-
authors independently evaluate the correctness of each of the
1,165 actions. There are 63 actions with disagreement. We
measure the inter-rater agreement using the Fleiss Kappa [35],
and the Kappa value is 0.85, indicating almost perfect agree-
ment. After discussing the actions with disagreement, both
co-authors reach a consensus on the correctness of all actions.
The accuracy of each algorithm is measured as the percentage
of the correctly generated actions.

Results. The inner and outer iterative mechanisms are both
important to iASTMapper. Moreover, the inner iterative
mechanisms contribute more to iASTMapper than the
outer iterative mechanism. Table V presents the evaluation
results of iASTMapper and its two variants. iASTMapper
outperforms both variants in terms of the three automatic
evaluation metrics (defined in RQ1) and the accuracy of code
edit actions. iASTMapper-Inner is worse than iASTMapper-
Outer. Specifically, iASTMapper generates 114,700 AST node
mappings, which slightly increase 2.28% and 0.98% of AST
node mappings from iASTMapper-Inner and iASTMapper-
Outer, respectively. iASTMapper generates 1,451 AST edit
actions and decreases 77.06% and 69.07% of AST edit actions
from iASTMapper-Inner and iASTMapper-Outer, respectively.
In addition, iASTMapper generates 337 code edit actions
and decreases 69.05% and 2.32% of code edit actions from
iASTMapper-Inner and iASTMapper-Outer, respectively.

1ASTMapper achieves the highest accuracy, 98.52%, while
1ASTMapper-Outer and iASTMapper-Inner have 93.91% and
25.71% accuracy, respectively. This result shows that the
inner iterative mechanisms contribute more to the accuracy of
iASTMapper than the outer iterative mechanism. Moreover,
the result confirms our observations that 1) Multiple rounds
of applying the heuristic rules are important to generate stable
and accurate mappings of the nodes in a specific level; and
2) There is mutual influence between the mappings of nodes
in different levels. Connecting the inner iterative mapping
processes helps generate better node mappings.

C. RQ3: Can iASTMapper generate more accurate AST map-
pings than state-of-the-art algorithms?

Motivation. In RQI, we have verified the superiority of
iASTMapper to the three state-of-the-art baselines in produc-
ing a larger number of AST node mappings and shorter sizes
of AST/code edit scripts for file revisions. In this research
question, we want to investigate another important question,
i.e., whether the AST node mappings and the AST/code edit
actions produced by iASTMapper are more accurate than those
produced by the baselines.

Approach. We manually evaluate the accuracy of the code edit
actions generated by iASTMapper, GT, MTD, and IJM. We
choose to evaluate the code edit actions rather than the AST
node mappings or AST edit actions because: 1) AST/Code
edit actions are generated from the AST node mappings. The
accuracy of AST/code edit actions can reflect the accuracy of
AST node mappings; and 2) As code edit actions are presented
using the program elements that users are familiar with, they
can facilitate the manual evaluation.

We randomly select 200 file revisions and randomly divide
them into four groups. Each group has 50 file revisions.
We also recruit 12 evaluators (including 11 masters and one
undergraduate) who are interested in our study and willing to
perform the manual evaluation task from the first co-author’s
university. The evaluators have 2-5 years of experience in
Java programming. We divide the evaluators into four groups
with each group having three members, while ensuring that
the members in different groups have comparative Java pro-
gramming experience. Next, we randomly assign the four file
revision groups to the four evaluator groups.

After introducing the evaluation task to the evaluators with
an example, we ask them to evaluate the correctness of
the four sets of code edit actions of statements generated
for their allocated file revisions using GT, MTD, 1IJM, and
iASTMapper. In total, there are 1,455, 1,489, 1,572, and
1,580 code edit actions of statements generated for the 50 file
revisions in the four groups, respectively. The evaluators do
not know which algorithm is used to generate each set of code
edit actions. They first independently evaluate the correctness
of each action, and label the correct actions with 1; otherwise
0. There are 47, 119, 89, and 100 actions with disagreement
among the evaluators in the four groups, respectively. We
measure the inter-rater agreement among the evaluators in each
group, and the Fleiss Kappa values are 0.82, 0.81, 0.84, and
0.84, respectively, indicating almost perfect agreement. The
evaluators in each group discuss the actions with disagreement
and reach a consensus on the correctness of all actions.

For each algorithm, we count the code edit actions of
statements generated for the 200 file revisions and the actions
evaluated as correct. We also distinguish the types of the
actions (see Section III-D). Then, the accuracy of an algorithm
is calculated as the percentage of correct actions, with respect
to the entire set of actions or the actions of every specific type.

Results. iASTMapper generates 96.23% accurate code
edit actions and improves GT, IJM, and MTD by



THE EVALUATION RESULTS OF CODE EDIT ACTIONS GENERATED FOR 200 FILE REVISIONS USING FOUR ALGORITHMS. THE VALUE ‘n/m(p)’ IN A CELL

TABLE VI

MEANS THAT 1 OF THE m ACTIONS GENERATED BY THE CORRESPONDING ALGORITHM ARE EVALUATED AS CORRECT AND THE ACCURACY IS p.

\ [ ADD [ DEL [ UPD [ MOV [ EXC [ M&U [ E&U [ Total \
GT 562/596(94.30%) | 170/173(98.27%) | 492/527(93.36%) | 45/81(51.72%) | 6/1(35.711%) 14/15(93.33%) | 4771(57.14%) | 1293/1412(91.57%)
MTD 460/574(80.14%) | 139/151(92.05%) | 494/649(76.12%) | 54/117(46.15%) | 18/36(50.00%) | 33/111(29.73%) | 5/42(11.90%) | 1203/1680(71.61%)
M 623/666(93.54%) | 222/243(91.36%) | 480/554(86.64%) | 50/32(60.98%) | 6/7(85.71%) 15/16(93.75%) | 3/5(60.00%) | 1399/1573(88.94%)
TASTMapper | 611/639(95.62%) | 215/216(99.54%) | 454/476(95.38%) | 75/77(97.40%) | 2/2(100.00%) | 16/17(94.12%) | 4/4(100.00%) | 1377/1431(96.23%)

TABLE VII
AVERAGE RUNNING TIMES (MILLISECONDS) OF FOUR ALGORITHMS.
[ Project [ GT [ MTD [ DM [ iASTMapper |
activemq 12.49 | 187.46 40.78 | 47.78
commons-io 17.26 | 430.61 33.98 | 59.80
commons-lang 35.56 | 1,115.06 | 58.63 | 151.45
commons-math 18.31 | 447.41 47.77 | 156.83
hibernate-orm 12.49 | 207.50 52.81 | 49.36
hibernate-search 7.19 167.74 3335 | 72.31
junit4 6.05 49.23 2425 | 15.78
netty 14.15 | 284.79 40.25 | 341.36
spring-framework | 10.67 | 186.07 38.39 | 36.56
Spring-roo 14.61 | 273.55 76.57 | 66.56
Overall 13.38 | 269.44 46.66 | 119.86
TABLE VIII

STATISTICS OF THE AVERAGE RUNNING TIMES (MILLISECONDS) OF FOUR
ALGORITHMS. ‘P’ STANDS FOR ‘PERCENTILE’.

\ [ Min | Max [ Mean | Sd [P25 [ P50_[ P55 | P95 |
GT 00 | 118152 | 13.38 | 6527 3.00 | 5.00 | 11.20 | 42.40
MTD 0.0 | 171,6844 | 26944 | 2323.24 | 460 | 1540 | 7540 | 807.76
OM 00 | 342712 | 46.66 | 23243 | 400 | 920 | 25.60 | 166.20
iASTMapper | 0.0 | 436.209.0 | 119.86 | 4.166.16 | 620 | 14.20 | 39.00 | 192.76

4.66%, 7.29%, and 24.62%, respectively. The accuracy of
iASTMapper is 94.12%-100% with respect to the different
types of actions, which is more stable than the baselines.
Table VI presents the manual evaluation results. 1,412, 1,680,
1,573, and 1,431 code edit actions of statements are generated
for the 200 file revisions by GT, MTD, IJM, and iASTMapper,
respectively. This result is almost consistent with the result
listed in Table III. However, the number of actions generated
by iASTMapper is slightly greater than those generated by GT.
This result may be caused by the reason that the distribution
of the sampled dataset is not very close to the entire dataset.
The accuracy of the code edit actions generated by GT,
MTD, UM, and iASTMapper are 91.57%, 71.61%, 88.94%,
and 96.23%, respectively. Therefore, the performance ranking
of these algorithms is iASTMapper > GT > IIM > MTD.
1ASTMapper achieves an improvement of 4.66%, 7.29%, and
24.62% in comparison with GT, IJM, and MTD, respectively.
In terms of the seven types of actions, iASTMapper also
achieves the highest accuracy, ranging from 94.12% to 100%.
Unlike iASTMapper, the accuracy of the baselines has a large
fluctation, with respect to the different types of actions. The
fluctation ranges of GT, MTD, and IJM are 51.72%-98.27%,
11.9%-92.05%, and 60%-93.75%, respectively.

D. RQ4: How efficient is iASTMapper?

Motivation. In RQ1 and RQ3, we have demonstrated the ef-
fectiveness of iASTMapper. However, if iASTMapper cannot

produce the analysis result for a file revision in a reasonable
time, it may not be acceptable in practice. In this research
question, we investigate the efficiency of iASTMapper by
comparing it with state-of-the-art AST mapping algorithms.

Method. We measure the running time (in milliseconds) used
to generate ASTs, build AST node mappings, and produce
code edit actions by GT, MTD, IJM, and iASTMapper for
the file revisions from ten projects. For each algorithm, we
perform it on a file revision for five times and calculate the
average running time. We then compute the average of the
average running times over the file revisions within a project
and the overall average running time over all file revisions.

Results. On average, iASTMapper takes approximately
119.86 milliseconds (ms) to locate the code changes in a
file revision. Table VII presents the average running times of
four algorithms. In terms of the overall average running time,
the order of the algorithms is GT > IIM > iASTMapper
> MTD. iASTMapper requires approximately 119.86ms to
process a file revision from building ASTs to generating code
edit actions, which is better than MTD (i.e., 269.44ms) but
worse than GT (i.e., 13.38ms) and IJM (i.e., 46.66ms). We
also observe that compared with GT and IJM, the average
running time of iASTMapper and MTD on different projects
have a relatively large fluctation. The possible reason is that
the mapping algorithms used by iASTMapper and MTD are
more complex than those used by GT and IJM, and thus it
takes more time for iASTMapper and MTD to analyze the
file revisions with a lot of AST nodes from some projects,
such as Commons-Lang, Commons-Math, and Netty.

To better understand the efficiency of the four algorithms,
we further calculate several statistics of the average running
times spent by each algorithm on all file revisions, as listed
in Table VIII. The average running times of each algorithm
exhibit a large range, spanning from Oms (which indeed means
“<1ms”) to tens of thousands or hundreds of thousands of
milliseconds. However, we observe that iASTMapper requires
14.2ms for 50% of the file revisions and 192.76ms for 95%
of the revisions, indicating that iASTMapper can complete the
analysis of most file revisions within 0.2 seconds.

V. THREATS TO VALIDITY

Threats to internal validity relate to the errors in the
implementation of the algorithms, the competency of the
evaluators for evaluating code edit actions, and the evaluators’
bias in the evaluation. We implement the three baselines:
GumTree, MTDiff, and IJM, using their packages released
at GitHub, and carefully check the code of our iASTMapper



and its variants to ensure that there are no errors with the
implementation. For the manual evaluation task, we recruit 12
evaluators with 2-5 years of Java programming experience.
Before conducting the task, we use an example to explain
the task to the evaluators and make sure that the evaluators
understand the task and thus reduce possible mistakes during
the evaluation. To avoid the subjective bias of a single person,
the evaluation of each code edit action is performed by two
or three evaluators. The evaluators first independently evaluate
a set of code edit actions and then discuss the disagreements
together to reach a consensus.

Threats to external validity relate to the generalizability
of the results. Our automatic evaluation is conducted using a
large-scale dataset consisting of 210,997 file revisions from
ten Java projects. The results obtained from such a big dataset
should be reliable. Moreover, we conduct a manual analysis
to evaluate the accuracy of the code edit actions generated by
iASTMapper and the baselines. Due to the heavy workload of
the manual evaluation, we randomly sample 50 file revisions
and 200 file revisions for answering the research questions
RQ2 and RQ3, respectively. Two co-authors and 12 evaluators
evaluate the actions generated for the two sets of file revisions,
respectively. The sample sizes and the numbers of evaluators
are not very large, but they are similar to or larger than those
used in prior studies [2]-[5]. The results could provide an
insight of the good performance of iASTMapper.

VI. RELATED WORK

A. AST mapping algorithms

There are many AST mapping algorithms proposed in
prior studies [7]-[10]. For example, ChangeDistiller [12] is
proposed by Fluri et al. to calculate the mappings of AST
nodes based on a reduced AST. Pawlik et al. [11] propose an
efficient method, RTED, to calculate the AST edit actions from
the AST node mappings. In recent years, GumTree [2] uses a
top-down algorithm to map identical subtrees and a followed
bottom-up algorithm to map the nodes that share a significant
number of mapped descendants. MTDiff uses an identical
subtree optimization to prune ASTs by removing unchanged
subtrees and then uses another four optimizations to find
additional mappings of nodes. IIM [4] improves the accuracy
of AST edit actions by pruning the ASTs and splitting the
reduced ASTs into parts with similar values to determine
whether the nodes can be mapped or not. Fan et al. [5] propose
a differential testing approach that can automatically detect
inaccurate mappings generated by multiple AST mapping
algorithms. They investigate the three widely used algorithms:
GumTree, MTDiff, and IJM, and find that those algorithms
generate inaccurate mappings for at least 20% file revisions
from ten Java projects. Inspired by the study, we propose
a novel iterative similarity-based AST mapping algorithm to
generate more accurate AST mappings. Moreover, we propose
a method for generating code edit actions (a novel concept
proposed in this work) from the AST node mappings to help
users better understand the code changes.

B. Downstream tasks of AST mapping

AST mapping is the underlying basis of many downstream
tasks, such as identifying non-essential changes [27] and
locating repetitive edits [28]. Besides, GumTree is widely used
to analyze change patterns, such as bug-fixing changes [30]-
[32], logging changes [33] and changes to online code exam-
ples [25]. Zhang et al. [26] propose an automated adaptation
analysis technique based on GumTree. Seader [29] compares
edit actions generated from code snippets to prepare for data-
dependency analysis. FIRA [34] also uses the AST edit actions
for commit message generation. With the ability to generate
more accurate AST mappings, our iASTMapper can facilitate
these downstream tasks.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose an iterative similarity-based AST
mapping algorithm, iASTMapper. Our algorithm aims to gen-
erate accurate node mappings between two ASTs while sac-
rificing some efficiency. iASTMapper is based on three types
of AST nodes in different levels: statements, inner-statements,
and tokens. We first reduce the mapping problem by matching
unchanged statements and inner-statements and then use an
iterative method to map the remaining unmapped nodes. We
iteratively map each of the three types of nodes based on
their similarities measured using heuristic rules. Moreover,
we iteratively connect the three iterative mapping processes.
Finally, a series of code edit actions are generated from the
node mappings to help users understand the code changes.
We compare the performance of iASTMapper and three base-
lines, i.e., GumTree, MTDiff, and IJM, using 210,997 file
revisions from ten Java projects and also perform a manual
evaluation with 12 evaluators on 200 file revisions. The results
demonstrate that iASTMapper outperforms the baselines by
increasing at least 25.18% AST node mappings and improves
at least 4.66% accuracy of the code edit actions. In future
work, we plan to improve iASTMapper by considering more
heuristic rules to address more complicate code changes, e.g.,
code refactoring. We will further evaluate iASTMapper with
more evaluators on more file revisions.

VIII. DATA AVAILABILITY

We release the code and data of this work at GitHub [1]
to help researchers reproduce and extend our study. In the
repository, we also provide instructions on how to run our
proposed iASTMapper and the baselines used in our study.
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