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With the rapid development of service-oriented computing and cloud computing, an increasing number
of Web services have been published on the Internet, which makes it difficult to select relevant Web ser-
vices manually to satisfy complex user requirements. Many machine learning methods, especially matrix
factorization based collaborative filtering models, have been widely employed in Web service recommen-
dation. However, as a linear model of latent factors, matrix factorization is challenging to capture complex

Keywords: interactions between Web applications (or mashups) and their component services within an extremely
Web service recommendation sparse interaction matrix, which will result in poor service recommendation performance. Towards this
Mashup problem, in this paper, we propose a novel deep learning based hybrid approach for Web service recom-

Collaborative filtering

l mendation by combining collaborative filtering and textual content. The invocation interactions between
Deep learning

mashups and services as well as their functionalities are seamlessly integrated into a deep neural net-
work, which can be used to characterize the complex relations between mashups and services. Experi-
ments conducted on a real-world Web service dataset demonstrate that our approach can achieve better
recommendation performance than several state-of-the-art methods, which indicates the effectiveness of

our proposed approach in service recommendation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Service-oriented computing (SOC) has significantly affected
software development by utilizing services as fundamental build-
ing blocks in constructing low-cost and reliable software applica-
tions. With the rapid evolution of SOC and cloud computing, an
increasing number of Web services (mainly in the form of RESTful
Web APIs) have been published on the Internet. For example, over
16,000 Web services have been published at Programmableweb!
(PW) by January 1, 2017, almost increased to three times as com-
pared with three years ago. Many Web API marketplaces founded
by famous IT companies like Amazon and Microsoft have also pub-
lished a plenty of Web APIs (we use the two terms, Web service
and Web API, interchangeably throughout the paper). Since most
user requirements cannot be satisfied by a single Web service, it is
necessary to compose existing Web services to offer value-added
services (also known as service composition or mashups) for users.
However, the overwhelming number of Web services makes it dif-
ficult to select relevant Web services manually to satisfy complex
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user requirements. Therefore, it is vital to proactively and accu-
rately discover suitable Web services according to user requests.

Web service recommendation refers to the process of proac-
tively discovering relevant Web services that can meet user re-
quests. Currently, matrix factorization based collaborative filtering
models have been widely employed in Web service recommen-
dation (Jain, Liu, & Yu, 2015; Liu, Tang, Zheng, Liu, & Lyu, 2016;
Samanta & Liu, 2017; Tian, Wang, He, Sun, & Tian, 2017; Zheng,
Ma, Lyu, & King, 2013), which can recommend Web services for
mashup construction or predict service qualities by leveraging ex-
isting usage histories. However, matrix factorization is deemed as a
linear model of latent factors and is thus difficult to capture com-
plex interactions between users and items when the interaction
matrix is highly sparse (He et al., 2017). According to the statis-
tics of PW, the largest Web service registry, the sparsity of the
mashup-service invocation matrix is about 99.83%, which is ex-
tremely sparse. How to accurately characterize the complex rela-
tions between mashups and services within an extremely sparse
matrix becomes an intractable issue.

Recently, deep learning methods have been successfully applied
in recommender systems (Zhang, Yao, & Sun, 2017), due to their
powerful representation learning abilities. They can be used to
learn hidden structures from the interactions of users and items.
Inspired by the idea of deep learning based collaborative filter-
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ing technologies (Cheng et al., 2016; Guo, Tang, Ye, Li, & He, 2017;
He et al., 2017; Paradarami, Bastian, & Wightman, 2017; Xue, Dai,
Zhang, Huang, & Chen, 2017), in this paper, we propose a novel
deep hybrid collaborative filtering approach for service recommen-
dation (referred to as DHSR) to capture the complex invocation re-
lations between mashups and services. Since the textual contents
including descriptions and tags of services and mashups are also
crucial in service recommendation, DHSR further integrates collab-
orative filtering with textual content within a deep neural network.
The main contribution of our work is summarized as follows:

o We propose a novel deep learning based hybrid approach that
combines collaborative filtering and textual content. The in-
vocation interactions between mashups and services as well
as their textual functionalities are seamlessly integrated into a
deep neural network, which can be used to characterize com-
plex relations between mashups and services within an ex-
tremely sparse interaction matrix.

We conduct a series of experiments using real-world Web ser-
vices crawled from PW to evaluate the proposed approach. Ex-
perimental results demonstrate that our approach can achieve
better recommendation performance than several state-of-the-
art methods.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related work. Section 3 formulates the problem of ser-
vice recommendation for mashup development. Section 4 intro-
duces the details of the proposed approach, and Section 5 presents
the experimental results and analysis. Finally, Section 6 summa-
rizes the paper and puts forward our future work.

2. Related work

As one of the fundamental research issues in the field of SOC,
Web service recommendation has been widely investigated. The
studies of this area can fall within the scope of three categories:
functionality-based Web service recommendation, social network-
based Web service recommendation, and collaborative filtering-
based Web service recommendation.

(1) Functionality-based Web service recommendation

Functionality-based Web service recommendation refers to rec-
ommending services by matching user requests with service de-
scriptions. Earlier studies that use keyword-based service profile
matching usually suffer from poor retrieval performance; there-
fore, many explicit semantics based approaches had been pro-
posed to improve the performance of service matching. These ap-
proaches (Paliwal, Shafiq, Vaidya, Xiong, & Adam, 2012; Rodriguez-
Mier, Pedrinaci, Lama, & Mucientes, 2016; Roman, Kopecky, Vitvar,
Domingue, & Fensel, 2015) leveraged domain ontologies or dictio-
naries to enrich semantics of descriptions of both services and user
requests, and adopted logic-based reasoning for semantic similar-
ity calculation; however, they are limited by manually defining on-
tologies and semantically annotating descriptions, which make it
difficult to be applied to large scale service data.

Besides these explicit semantics-based approaches, many other
efforts integrate functionality based service recommendation with
machine learning or data mining technologies. Meng, Dou, Zhang,
and Chen (2014) used keywords to indicate user preferences
and recommended services according to their semantic compat-
ibility with user preferences. Zhang, Wang, and Ma (2017) pro-
posed to extract domain service goals from textual descriptions
to meet users’ intentional requests. Yao, Wang, Sheng, Ruan, and
Zhang (2015) presented an approach to service recommendation
based on services’ functional features and the co-invocation among
services.

(2) Social network-based Web service recommendation

Social network-based Web service recommendation refers to
utilizing social network relationships of developers or services in
Web service recommendation. For example, Cao, Liu, Tang, Zheng,
and Wang (2013) integrated user interests and social relations in
recommending services for mashup development. Chen, Paik, and
Hung (2015) designed a social network for service recommenda-
tion by combining multiple relations among users, services, and
topics. Xu, Cao, Hu, Wang, and Li (2013) constructed a global
social service network based on complex networks and pro-
posed a service discovery approach based on the service network.
Gao, Chen, Wu, and Bouguettaya (2016) presented a service rec-
ommendation method by modeling users’ historical preferences,
functionalities of services and mashups, as well as invocation re-
lations between mashups and services. Liang, Chen, Wu, Dong, and
Bouguettaya (2016) adopted heterogeneous information network to
describe heterogeneous objects including mashups, services, tags,
and providers, as well as their relations and further proposed a
meta-path based Web service recommendation method. Their ap-
proach comprehensively analyzed and integrated multiple factors
that may contribute to the invocation relations between mashups
and services, and can thus achieve high recommendation perfor-
mance.

(3) Collaborative filtering (CF)-based Web service recommenda-

tion

CF-based Web service recommendation refers to recommend-
ing services according to the past composition history, the simi-
larity of users, or the similarity of services. They are firstly used
in quality of service (QoS) prediction, which can be used to select
high-quality services in Web service recommendation. For exam-
ple, Zheng et al. (2013) proposed an approach to predict missing
QoS information by using neighborhood integrated matrix factor-
ization. Liu et al. (2016) also presented a location-aware CF method
for QoS-aware Web service recommendation. Tian et al. (2017) pro-
posed a time-aware CF algorithm based on implicit feedback for
Web service recommendation, where three kinds of time effects
including user bias shifting, Web service bias shifting, and user
preference shifting, are integrated into a latent factor model.

Recently, many hybrid approaches have been proposed to
recommend services by incorporating multiple factors such
as service invocation history and functionalities. For example,
Yao, Sheng, Segev, and Yu (2013) proposed a hybrid approach
by combining CF and content based recommendation, which can
dynamically recommend Web services that fit users’ interests.
Jain et al. (2015) incorporated three factors into the service recom-
mendation process: APIs’ functionalities, usage history of APIs by
existing mashups, and popularities of APIs. They leveraged proba-
bilistic topic models, matrix factorization based collaborative filter-
ing, and Bayes’ theorem to recommend APIs for mashup creation.
In their latest work (Samanta & Liu, 2017), they further used the
Hierarchical Dirichlet Process (HDP) to discover functionally rele-
vant services based on their specifications, and leveraged Proba-
bilistic Matrix Factorization (PMF) to recommend services based on
usage history and tackle the cold start problem for new mashups
through their closest neighbors.

Unlike existing studies, we proposed a hybrid Web service rec-
ommendation approach by incorporating CF and textual content
within a deep neural network. Our approach is a combination
of functionality-based and CF-based Web service recommendation
approach. A deep learning based recommendation approach for
long-tail Web services was proposed recently (Bai, Fan, Tan, &
Zhang, 2017), which exhibited the advantages of applying deep
learning technologies in this field. They leveraged the deep learn-
ing model SDAE (stacked denoising autoencoders) and time infor-
mation to learn feature representations. Their work is mainly a
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content-based learning framework, which does not consider the
interaction between mashups and services from the viewpoint of
matrix factorization. Different from their work, ours mainly tries to
characterize the complex relations between mashups and services
by integrating collaborative filtering with textual content using a
multilayer perceptron.

3. Problem statement

In this section, we present the problem of Web service recom-
mendation. In particular, we consider the scenario where a mashup
or a Web application is to be developed.

Suppose that a developer plans to develop a mashup that can
“list the average of bitcoin prices across leading global exchanges,
to serve as a standard retail price reference for industry partici-
pants and accounting professionals.” The developer firstly analyzes
the functional requests of the mashup, and then finds and se-
lects suitable component services that can be integrated into the
mashup. During this process, Web API recommendation technol-
ogy can be leveraged to recommend candidate component services.
In this example, the following Web services are actual component
services of the mashup: Bitfinex API that provides bitcoin wallets
and storage, BTC-e API that can trade bitcoins for different curren-
cies worldwide, BitStamp API that supports online exchanges for
bitcoins, and Mt Gox API that supports trading between US Dol-
lars and bitcoins. The focus of this paper is on how to recommend
these services to the developer according to their historical invo-
cations and their textual descriptions, to improve the efficiency in
mashup development.

More formally, the problem to be addressed in this paper is de-
scribed as follows. Let S be a set of services and M be a set of
mashups. Given the textual description of a mashup to be devel-
oped and some possible component service information (if any),
how can we recommend suitable services 'S for mashup devel-
opment based on historical interactions between M and S, as well
as their respective textual descriptions? Note that the historical in-
teractions between M and S are a kind of implicit feedbacks, be-
cause the historical interactions only record whether services are
invoked by mashups without explicitly expressing their feedbacks
like ratings.

4. DHSR approach
4.1. Approach overview

In this section, we propose a Deep Hybrid collaborative filtering
approach for Service Recommendation (called DHSR), which aims
to capture underlying complex interactions between mashups and
services according to their invocation history and functionalities.
As depicted in Fig. 1, DHSR consists of two components: a CF com-
ponent and a content component. These two components are rep-
resented by respective feed-forward neural networks, whose last
hidden layers are concatenated together.

More specifically, the CF component decomposes the mashup-
service invocation matrix, learns a latent representation of
mashups and services, and models the interactions between them
non-linearly and deeply. The content component firstly transforms
textual descriptions of mashups and services into feature vectors
that represent their content similarity by utilizing multiple simi-
larity feature extractors and incorporating several pre-trained word
embeddings. Afterwards, the content component learns the latent
interactions between mashups and services from the viewpoint of
textual content by a neural network. Finally, to combine these two
components, we concatenate their last hidden layers and then feed
them into a three-layer neural network. The parameters of the
whole model are trained jointly.

4.2. The CF component

In essence, the CF component learns non-linear interaction
function F, latent feature matrix of mashups P and latent feature
matrix of services Q, and estimates the interaction rps between
mashup m and service s, as defined in Eq. (1).

fmS:F(m7s| P!Q7®)a (1)

where ® denotes the parameters of F. Moreover, the traditional MF
model can be deemed as a linear model of latent factors (He et al.,
2017), as shown in Eq. (2),
K
fins = Pm' qs = mek%k: (2)
k=1
where K denotes the dimension of the latent feature vector. In
contrast, the CF component uses a multilayer perceptron (MLP) to
learn the interaction function F, which is naturally non-linear.

As depicted in Fig. 1, one-hot encodings of mashup m and ser-
vice s chosen from the mashup-service invocation matrix are fed
into the CF component. Details of the CF component are described
as follows. The identifiers of the input mashups and services are
firstly transformed into sparse binary vectors with one-hot encod-
ings (for example, [0, 0, 1,0,0,0,0,0, 0, 0, ..., 0]), and then trans-
formed into dense vectors, which can be viewed as latent features
of mashups and services in the context of latent factor model. To-
wards this end, we use a fully connected layer, also known as an
embedding layer, as the first hidden layer. The architecture of the
embedding layer is shown in Fig. 2.

Two input vectors x¥ and x5, represented in sparse binary vec-
tors, denote the current mashup and service encoded using one-
hot encodings, whose sizes are M and S, respectively. The identity
function is used as the activation function in the embedding layer.

n=f(xnIP) =PTx}. I, = f(x5|Q) = QTxS 3)

where P ¢ RM*K Q ¢ RS*K and K denotes the size of the hid-
den layer. The embedding layer can be viewed as a lookup table,
whose values are weights P and Q of its edges. The outputs of the
embedding layer are represented as:

In = [Pm1: Pm2, - - Pmkl, s = [4s1, 952, - - - » k] (4)

Following this setting, the one-hot encodings of mashups and
services are compressed into dense vectors, named as mashup em-
beddings and service embeddings. In this work, P and Q are ini-
tialized with a Gaussian distribution, and are jointly learned with
other parts of the neural network.

Next, I, and [s are concatenated and fed into a deep neural net-
work. More formally, the forward propagation process is defined
as:

llzf(W1T|: b i|+b1>,

b (5)
l,‘:f(VViTli_] +bi), i=2,...,N,

r=ly,

where [; (i=1, ..., N) denotes an intermediate hidden layer, W; de-

notes the iy, weight matrix, b; denotes the iy, bias term, rF denotes

the output of the last hidden layer of the CF component, and f de-

notes the activation function. In this work, we use rectified linear

unit (ReLU), which has been widely used in deep learning, as the

activation function of the hidden layers:

F(x) = max (0, ). (6)
4.3. The content component

As depicted in Fig. 1, the content component with the objec-
tive of learning interactions between mashups and services in the
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content field consists of two parts: a similarity calculation part
and a Deep Neural Network (DNN) part. Referring to the work in
(Kenter & Rijke, 2015), the similarity of textual descriptions be-
tween mashups and services can be calculated by using arbitrary
numbers of pre-trained word embeddings.

4.3.1. Similarity calculation part

Given textual description t¥ of mashup m, textual description t?
of service s and word embedding E, we can extract multiple sim-
ilarity features to describe semantic similarities between m and s.
Three kinds of similarity feature extractors are considered. To il-
lustrate the process of extracting similarity features, we use the
example described in Section 3, in particular the similarity calcu-
lation between mashup “CoinDesk BPI” (m) and service “BitStamp
HTTP” (s), as shown in Fig. 3.

(1) Feature extractor on the weighted semantic similarity
fews( t%l, fgg,E)

The weighted semantic similarity assumes that the terms in a
text are not equally important, and the importance of a term can
be measured by its inverse document frequency (IDF). To capture
finer-grained similarity features, we set multiple intervals for the
weighted semantic similarity features. Detailed process of calculat-
ing feys is described as follows.

We firstly calculate the semantic similarity between each term
w in the longer text and the shorter text t under a given word em-
bedding E, which is defined as the maximum of cosine similarities
between embedding vectors of w and each term in t.

sem(w, t,E) = MAX ({cosineSim(E(w), E(w'))|w’ e t}). (7)
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Fig. 3. Illustration of the similarity calculation process.

E(w) - E(w') o
TEW) TTEW) T (®)
where E(w) denotes the embedding vector of term w under em-
bedding E, and MAX(S) denotes the maximum of set S. In other
words, we calculate sem(w, tS,E) (or sem(w, tM E), if [tM] < |t2])
for each term w in t¥ (or ¢3).

Next, we assign these values of sem to predefined intervals, and
then calculate the weighted semantic similarity feys(w,t, E) be-
tween w and t.

cosineSim(E(w), E(w')) =

sem(w,t,E)- (k+1)
sem(w,t,E)+ k- (1-b+b-

fews(w, t,E) = IDF(w) - T
)
9)

where IDF(w) denotes the IDF value of term w, avgl denotes the
average length of descriptions of all mashups and services, k and b
are smooth parameters, and |t| denotes the length of t.

Finally, the values of feys(w, t, E) within each interval are aver-
aged to obtain a finer-grained similarity feature.

Example. We set the intervals used in the weighted semantic
similarity as: —1-0.15, 0.15-0.4, 0.4-0.8, and 0.8-o0, as described
in Section 5.1. As shown in Step 1.1 of Fig. 3, since the description
of service s is longer than that of mashup m, we firstly calculate
semantic similarities (sem) between each term w in the descrip-
tion of s with the description of m according to Eq. (7). The result
is {0.1852, 0.5426, 0.8845, 1.0000, 0.3254, 0.2623, 0.7842, ...}. Each
similarity value of sem will be assigned to one of the four inter-
vals. For example, {0.5426, 0.6655, 0.7842, ...} is assigned to inter-
val 0.4-0.8. Afterwards, feys will be calculated according to Eq. (9).
Finally, the values of fe,s within each interval are averaged. In this
way, the weighted semantic similarity vector between m and s can
be represented as [0.8762, 2.4001, 5.0168, 4.1029].

(2) Feature extractor on the unweighted semantic similarity

feun( , SSE)

The unweighted semantic similarity assumes that the terms in
a text are equally important. We firstly calculate the value of cosi-
neSim(E(w), E(w’)) for each term pair w e tM and W e § ac-
cording to Eq. (8), and then assign these values of cosineSim(E(w),
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Algorithm 1 Similarity calculation for mashups and services.

Input: functional description t¥ of mashup m, functional description t; of service s, sets of word embeddings Ei(i=1, 2, ..., N)

Output: similarity Sim,,s between mashup m and service s
1. set Sim,,s to empty feature vector;

2. for i from 1 to N do

3. calculate feys(t¥, ¢S, E;) with multiple intervals;

4. calculate feyn(t¥, 5, E;) with multiple intervals;
5. calculate fems(tM, t5, E);

6.

7.

. end for

concatenate Simp,s with fews(EV, 5, E;), feun (8,85, E;), and fems (tY, 5, E;);

E(w')) to predefined intervals. Finally, we take the average of values
within each interval to obtain a finer-grained similarity feature.

Example. We set the intervals used in the unweighted seman-
tic similarity as: —1-0.45, 0.45-0.8, and 0.8-1, as described in
Section 5.1. As shown in Step 1.2 of Fig. 3, we firstly calculate the
cosine similarities (cosineSim) of all term vectors between m and s.
Next, each value of cosineSim will be assigned to one of the three
intervals, respectively. Finally, the values within each interval are
averaged, and the unweighted semantic similarity vector is [0.2199,
0.5531, 0.9843].

(3) Feature extractor on the mean term

femts(tM, tgg, E)

similarity

The mean term similarity takes the average of embedding vec-
tors for each term in tM and ¢, respectively; and then calculates
their cosine similarity.

E(w) E(w)
2 len( tn"f)’wz len( t5)

w e th ety

fems(th. 5, E) = cosineSim

(10)

Please note that the mean term similarity cannot be further
classified into more similarity features since it takes the average
of term vectors within each text in advance.

Example. As shown in Step 1.3 of Fig. 3, we firstly transform
the embedding vectors of m and s, and then calculate the cosine
similarity between two new vectors using Eq. (10). The result is
0.7854.

Finally, these similarity features are concatenated to construct a
new vector.

Example. As shown in Step 2 of Fig. 3, we concatenate these
three types of similarities and get a feature vector of length eight
[0.8762, 2.4001, 5.0168, 4.1029, 0.2199, 0.5531, 0.9843, 0.7854] to
represent the similarity between m and s under embedding E.

Moreover, we further consider more kinds of word embeddings
to construct more feature vectors of similarities, which will be fi-
nally concatenated together and fed into a deep neural network.
The detailed process of calculating the similarity Sim;s between
mashup m and service s is described in Algorithm 1.

4.3.2. DNN part

Once Simy,s is obtained from the similarity calculation part, it is
fed into a deep neural network. More formally, the forward propa-
gation process is defined as follows:

l1 :f(WfSimm,s + b1),
lizf(M/iTli_l+b,’),i=2,...,L, (11)

rContent — lL’

where [;, W;, and b; (i=1, ..., L) denote the iy, intermediate hidden
layer, weight matrix and bias term, respectively. Here we still use
ReLU as the activation function of the hidden layers.

4.4. Combination of the two components

The CF component and the content component are combined
by concatenating their last hidden layers and then fed into a new
hidden layer to learn the interaction between them non-linearly.
We use the sigmoid function as the activation function of the out-
put layer for implicit feedback prediction, and use ReLU as the ac-
tivation function of the hidden layer. The output of the sigmoid
function in the output layer, in other words, the probability of a
service to be invoked by a mashup, can be seen as the result of
service recommendation.

The forward propagation of the whole model can be formally

described as follows.
PTxM
+biq)... ) +bin),

rCF: f(wl—l:N < .. f(wlT] [ QTXS

rC"”te"[=f(W2T,L(~ .. f(W2T1Simm,s + b2,1) .. ) + bz,L)’ (12)

(CF
fms=0 <W3T,2 (f(W3T_1 |: Content ] + b3,1) + b3,2)>,

where W;; and b,; denote the i weight matrix and the bias term
of the CF component, W,; and b,; denote the i,;, weight matrix and
the bias term of the content component, and Ws; and bs; denote
the i, weight matrix and the bias term of the combination layer.
N and L denote the numbers of hidden layers of the CF component
and the content component, respectively. 7;;s denotes the predic-
tion of the implicit feedback.

4.5. Model learning and prediction

In a recommendation model, the objective function is used to
determine how the model training penalizes deviations between
predicted values and the ground truth, which can significantly af-
fect the recommendation performance.

Pointwise and pairwise are two types of loss functions com-
monly used in recommender systems. The pointwise loss function
selects a single instance each time and transforms the recommen-
dation task into a regression or classification problem. Squared loss
and log loss (He et al., 2017) are two typical loss functions of
this type. The pairwise loss functions, such as Bayesian person-
alized ranking (BPR) (Rendle, Freudenthaler, Gantner, & Schmidt-
Thieme, 2009) and AUC loss, select a pair of instances each time
and transform the recommendation task into a pairwise classifica-
tion problem. Both the two kinds of functions can be applied in
Web service recommendation. When applying pointwise loss, we
use all invocation relations between mashups and their component
services as positive instances and sample negative instances from
unobserved mashup-service invocation relations uniformly by con-
trolling a negative sampling ratio (denoted as nsr). When applying
pairwise loss, we pair exactly one sampled negative instance with
a positive one and optimize model parameters to make the posi-
tive instance always ranked higher than the negative one. Specifi-
cally, for any mashup m and one of its component services s (that
is, rms=1), we uniformly sample an un-invoked service n (that is,
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Algorithm 2 Training Algorithm of DHSR.

Input: sets of word embeddings E;j(i=1, 2, ..., N), sets of similarity feature
extractors f,(i=1, 2, ..., L), set of mashup descriptions t¥, set of service
descriptions t°, mashup-service invocation matrix R, negative sampling ratio
nst, number of epochs Epochs, and batch size bts.

Output: Weight matrices and bias terms P, Q, Wy, W5, W3, by, by, bs.

initialize P, Q, W;, W,, W3 according to Gaussian distribution;

. initialize by, by, b3 to 0;

. uniformly sample unobserved invocations as R~ according to nst;

. set R* to all observed invocations and set R to R* UR™;

. for epoch=1, ..., Epochs do

. shuffle R and partition R into Ry,..., R; according to bts;

. for iter=1, ..., t do

for each mashup m and service s in R, do

9. compute I and Is; according to Eq. (3);

10. compute rF according to Eq. (5);

11. compute Simy,s using Algorithm 1;

12. compute s according to Eq. (12);

13. end for

14. optimize model parameters using Adam;

15. end for

16. end for

PONDU A WN

rmn=0) to form a triplet (m, s, n). Note that predicted rating fins
should be higher than .

The pointwise loss can flexibly set the sampling ratio of neg-
ative instances, while the pairwise loss can only pair a negative
instance with a positive one. Therefore, pointwise is better than
pairwise in some recommendation scenarios (He et al., 2017), par-
ticularly in the service recommendation field where the number
of services used by each mashup is very small, and the interac-
tion matrix is thus extremely sparse. According to this consider-
ation, we use log loss, which is the binary cross-entropy, as the
loss function of our model. Moreover, we use L, regularization to
prevent model overfitting. The cost function J to be minimized is
defined as follows.

A . A
J== Y ruslogfms + (1 = rms)log (1 — Fins) + 5 1e 112,

(m,s)eR+*UR~
(13)

where R* denotes the set of positive instances, R~ denotes the set
of negative instances, A is the regularization parameters, and ® is
the weights of edges.

We use the mini-batch Adaptive Moment Estimation (Adam)
(Kingma & Ba, 2014) to learn our proposed model. The total train-
ing process of DHSR is described in Algorithm 2. The derivative
of the model can be calculated with back-propagation, which are
omitted in this paper.

Once the model is learned, we can conduct model prediction
according to user requests in mashup development. For a given
request of mashup m, the recommendation procedure can be de-
scribed as follows. We firstly calculate the score between m and
each candidate service s in the training set according to Eq. (12),
which represents the probability of s being recommended to m.
Afterwards, all the scores are sorted and the top N services are fi-
nally recommended for the development of mashup m.

We still use the example in Section 3 to illustrate the train-
ing and recommendation processes. Because the major steps of the
two processes are very similar except that the training process in-
cludes a step of model parameter optimization, we only show how
the model can recommend services for a given mashup (e.g., “Coin-
Desk BPI”, denoted as m). At this stage, the scores between “Coin-
Desk BPI” and all services in the registry should be calculated by
DHSR, and N services with the top scores will be selected as the
recommendation result. We use the calculation process between
service “BitStamp HTTP” (s) and the mashup m for illustration, as
shown in Fig. 4.

Step 1: The first step is to obtain the score vectors of the CF
component and the content component, which are detailed
in the following two sub-steps, respectively.

Step 1.1: In the CF component, the one-hot encodings of m and
s:[0,0,1,00 0,0 0,0,0, ..., 0] and [0, O, O, O, O, O,
1, 0, 0, 0, ..., 0], are firstly transformed into dense latent
vectors: [—1.2563e-16, —1.1837e-24, —2.7764e-24, —1.4276e-
24, -2.5638e-15, —2.9917e-15, —5.1344e-25, 1.0564e-35]
and [-0.2098, —0.2515, —0.1788, —0.2060, —0.2366, 0.2042,
—0.2030, —0.1895], respectively. Afterwards, the two vectors
are concatenated and their concatenation is then fed into an
MLP to obtain the score vector rF of the CF component us-
ing Eq. (5). The result of rF is: [0.0185, 0.1489, 0.1678, 0.1311,
0.1703, 0, 0.1771, 0.0331, 0, 0.1794, 0.0348, 0.1880, 0, 0.2106,
0, 0].

Step 1.2: In the content component, the similarities between
their textual descriptions are firstly calculated and con-
catenated, resulting in a similarity feature vector: [0.8762,
2.4001, 5.0168, 4.1029, 0.2199, 0.5531, 0.9843, 0.7854, 0,
2.6780, 3.9239, 4.9650, 0.2561, 0.5683, 0.9271, 0.7136, O,
2.4982, 5.0871, 4.2298, 0.2255, 0.5714, 0.9731, 0.7412]. Af-
terwards, the similarity feature vector is fed into an MLP to
obtain the score vector rment of the content component us-
ing Eq. (11). The result of rcntent js: [0.8649, 1.1665, 1.4680,
0.8577, 0.5067, 0.0135, 0.4424, 0.0464, 0.1132, 0.6547, 1.0098,
0.4218].

Step 2: Two score vectors rF and rcnent are concatenated and
fed into an MLP to calculate 7pns using Eq. (12). s de-
notes the predicted probability of service s to be invoked by
mashup m. The result of ;s in this example is 0.8640.

Step 3: Similarly, we can predict a list of similarity scores be-
tween the mashup m and all other services in the service
registry, e.g., {0.8640, 0.0293, 0.1073, 0.0856, 0.1423, 0.0260,
0.3434, 0.1151, 0.8566, ...}, and finally the services with top
scores can be recommended for m. Please note that this step
is not shown in Fig. 4 since Fig. 4 only illustrates the calcu-
lation process of a mashup with a service.

4.6. Computational complexity analysis

We further analyze the computational complexity of the pro-
posed approach. For each epoch, the similarity calculation of
the content component costs about O(avgsl*avgml*E*(nst+ 1)*I),
where avgsl is the average length of the service description, avgml
is the average length of the mashup description, E is the number of
word embeddings, nst is the negative sampling ratio, and I is the
number of observed ratings. Among these parameters, avgsl and
avgml are close to a constant. In the data set we used in experi-
ments, the average lengths of services and mashups are 42.91 and
22.87, respectively. E is set to 3 in our experiments, which can also
be viewed as a constant if the experimental setting is fixed. nst
is another constant during experiment setting. Therefore, the cost
of the similarity calculation is approximately linear to the num-
ber of observed ratings in the interaction matrix. Note that the
complexity listed here is the maximum possible value because the
calculated similarities can be cached for calculation in subsequent
epochs.

Referring to the complexity analysis of the neural network
(Kim, Park, Oh, Lee, & Yu, 2016), the computational complexity of
the neural network part of our model can be seen as scaling lin-
early with the size of given data when all parameters, such as the
number of layers and the number of neurons, are fixed. There-
fore, if experimental parameters of the neural network are fixed,
the computation time of the entire optimization process of DHSR
grows approximately linearly with respect to the size of given data.
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Fig. 4. Illustration of the DHSR-based service recommendation process.

The complexity analysis shows that our proposed approach can be
applied in large-scale systems.

5. Experiments

In this section, we conducted a series of experiments to evalu-
ate the proposed DHSR based on a real-world Web service dataset.
These experiments were designed to answer the following three
research questions:

* RQ1: Does the proposed DHSR outperform the state-of-the-art
Web service recommendation methods?

* RQ2: Which kind of objective functions, pairwise loss or point-
wise loss, is better for the service recommendation task?

* RQ3: Will the recommendation result be affected by adding the
number of word embeddings?

5.1. Experimental settings

We conducted a series of experiments to evaluate our proposed
approach. All the experiment programs were developed in Python,
and carried out on a PC with Intel Core 4 CPU i7-4710HQ, @2.5 GHz
and 8GB RAM, running the Windows 10 OS.

5.1.1. Dataset

Statistics of the dataset. ProgrammableWeb (PW) is by far the
largest online Web service and mashup registry. To evaluate the
performance of the proposed DHSR, we crawled a dataset from
PW on July 25, 2016. The dataset consists of 13,520 services and
5,769 mashups. Because we are only interested in the services in-
voked by at least one mashup, and many services have been dep-
recated, the dataset was thus reduced to containing 5,769 mashups
and 1,103 services. The sparsity of the interaction matrix in the
dataset is about 99.83%. The dataset contains descriptions and tags
(including the primary and secondary categories) of mashups and
services and the invocation relations between them. For example,
Table 1 shows a mashup and a service in the dataset, where ser-
vice “BitStamp HTTP” is a component service of mashup “CoinDesk
Bitcoin Price Index (BPI).” Table 2 illustrates the detailed statistial
information of the dataset.

Table 1
Example of mashups and services in the dataset.

Attribute Value

(a) Mashup “CoinDesk Bitcoin Price Index (BPI)”
Mashup name CoinDesk Bitcoin Price Index (BPI)

Category Bitcoin, Currency, Prices
Component services Mt Gox, BitStamp HTTP, BTC-e, Bitfinex
Description “The CoinDesk Bitcoin Price Index (BPI)

represents an average of bitcoin
prices across leading global
exchanges that meet criteria
specified by the BPL ..."

(b) Service “BitStamp HTTP”

Name BitStamp HTTP
Category Financial, Currency, Marketplace
Description “BitStamp is an online exchange for
bitcoins. Online consumers and
traders can use it as a global
marketplace to buy and sell BitCoins.
Table 2
Statistics of the dataset.
Statistics Value
Number of services 13,520
Number of mashups 5769

Average number of services in mashups 1.90

Number of mashup-service interaction 10,950
Vocabulary size 27,831
Average number of word tokens in services 4291
Average number of word tokens in mashups 22.87
Average number of categories of mashups and services 3.39

Dataset preparation. In our dataset, the functionalities of
mashups and services are embodied in their textual descriptions
and tags (also knowns as categories). Considering that the tags are
manually added by the PW administrators and are thus more valu-
able in identifying services or mashups, we used amplification co-
efficient @ to amplify the weights of tags and combined them with
textual descriptions to construct a functional description corpus.
Afterwards, we performed the following steps to preprocess the
extracted corpus.
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Spelling correction. We leveraged PyEnchant,? an English spell
checking library for Python, to replace misspelled words.
Tokenization. The NLTK® toolkit was used to obtain lists of
words (also known as tokens) from the input corpus.
Stopword removal. The built-in stopword list in the NLTK
toolkit was utilized to remove the common words frequently
occurred in written English.

o Lemmatization. We used the WordNet* Lemmatizer packaged
in the NLTK toolkit to reduce all words to their root forms.

After preprocessing the dataset, we further prepared the word
embeddings for subsequent calculation. We used two kinds of
word embeddings. The first is the publicly released word em-
beddings, referred to as reference embeddings. The reference em-
beddings we used are described as follows. The word embedding
generated in (Baroni, Dinu, & Kruszewski, 2014) consists of vec-
tors with 400-dimensional, 5-word context window, and 10 nega-
tive samples; and the Glove word embedding (Pennington, Socher,
& Manning, 2014) consists of 840 billion tokens, 2.2 million vo-
cabularies, and 300-dimensional vectors. To deal with out-of-
vocabulary words, we adopted two strategies. The first strategy
is dividing the compound words and summing their embedding
vectors. For example, compound word “crypto-currency” can be
transformed into the sum of E(“crypto” ) and E(“currency”). The
intuition behind this strategy is that the distributional semantic
approach such as Word2vec, can capture the deep-level seman-
tic information and subtle semantic relationships between words
(Mikolov, Chen, Corrado, & Dean, 2013). The second strategy is to
map terms to random vectors, which is widely applied in text
mining. Moreover, we trained a word embedding on the service
corpus on our own, referred to as the local embedding. We used
Word2vec to train the local embedding, and adopted Skip-gram
as the architecture and hierarchical softmax as the optimization
model. The window width and the vector dimensionality were set
to 5 and 80, respectively.

Training set and test set. To evaluate the recommendation per-
formance, we constructed a training set and a test set for each ex-
periment based on the crawled dataset. Firstly, we randomly se-
lected 30% of the mashups that include more than one compo-
nent service as the test set, and the rest mashups were used as
the training set. Note that we randomly selected 10% of the train-
ing set as the validation set. Then, for each mashup in the test set,
one service was randomly selected from the component services
of the mashup. The selected services were included in mashup re-
quirements (namely they acted as a part of user input) while the
remaining services of each mashup in the test set were used for
prediction. Each experiment was performed 20 times, and their av-
erage values were taken as reported results.

5.1.2. Evaluation metrics

In the experiments, we adopted five metrics to evaluate the rec-
ommendation performance of DHSR.

Mean Average Precision (MAP) at top N services in the ranking
list is defined as:

1 1 /N
MAP@N = Wr;wN—m;(TJ(z)), (14)

where Ny, is the number of component services of mashup m, N;
denotes the number of component services of m occurred in the
top i services of the ranking list, M is the mashups in the test
set, and (i) indicates whether the service at ranking position i is
a component service of m.

2 https://pythonhosted.org/pyenchant/.
3 http://www.nltk.org/.
4 http://wordnet.princeton.edu/.

Normalized Discounted Cumulative Gain (NDCG) at top N ser-
vices in the ranking list is defined as:

2100 _ 1

1 N
Eglogz(wz‘)’

NDCG@N = I]VI > (15)
meM
where Sp, represents the ideal maximum DCG score that can be
achieved for m.
Precision, Recall and F1-measure at top N services in the rank-
ing list are defined as:

. 1 |rec(m) Ntruth(m)|
Precision@N = —— , 16
Ml 2 frecqm)] (1e)
1 |rec(m) N truth(m)|
Recall@N = Mm%\:/, Eruth )| , (17)
_ 1 |rec(m) N truth(m)|
Fl1oN = M| gﬂzvec(m)l + |truth(m)|’ (18)

where rec(m) is a recommended service list for mashup m, and
truth(m) is a set of services that have interactions with m in the
test set (namely the actual component services of m).

5.1.3. Competing approaches

We chose several state-of-the-art recommendation algorithms
for comparison. Considering that our approach incorporates tex-
tual information and collaborative filtering (CF), these selected al-
gorithms cover CF method, matrix factorization method, content-
based method, and hybrid method, to make a comprehensive com-
parison.

e CF (Xu et al., 2013). CF is a classical recommendation technique
that has been widely used in many recommendation systems.
We implemented user-based CF in our experiment.

e SVD (Paterek, 2007). SVD is a classical matrix factorization
technique used in recommender systems.

o BPR-KNN (Rendle et al, 2009). BPR-kNN uses BPR to learn
service recommendation models from the implicit feedback of
mashups with a pairwise ranking loss.

e NCF (He et al, 2017). Neural Collaborative Filtering (NCF)
is adopted to capture the non-linear relationship between
mashups and services and recommend relevant services.

o TF-IDF (Xia et al., 2015). Services are recommended according

to TF-IDF based cosine similarities with mashup requests.

PaSRec (Liang et al., 2016). PaSRec learns a CF based service

recommendation model with implicit feedback of mashup using

BPR.

5.14. Parameter settings

We implemented our proposed approach based on Keras,” a
widely adopted deep learning library. To ensure that the hyper-
parameters of DHSR can obtain the best recommendation result,
we randomly sampled an interaction for each mashup to construct
a cross-validation set and tuned the hyper-parameters accordingly.
The model parameters were randomly initialized by following a
Gaussian distribution with a mean of 0 and standard deviation of
0.01. According to the result of parameter tuning, the batch size,
the learning rate, and the number of latent factors was set to 8,
0.001, and 8, respectively. Similar to most neural networks, the
architecture of our network model is designed by following the
tower pattern, where each upper layer has a smaller number of
neurons than its lower layer. Because the size of PW dataset is rel-
atively small, setting too many hidden layers will result in overfit-
ting, and thereby reduce the performance of service recommenda-
tion. We set the layer number of the CF component to 4 (including

5 https://keras.io/.
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Fig. 5. Performance comparisons of different approaches on the test set.

the embedding layer), the layer number of the content component
to 3, and regularization parameter A to 0.01, respectively.

In our experiments, we set amplification coefficient « to 2. In
the similarity calculation part of the content component, we also
tuned parameters to achieve optimized results. k and b were set
to 1.2 and 0.75, respectively. The intervals used in the weighted
semantic similarity were set to —1-0.15, 0.15-0.4, 0.4-0.8, and 0.8-
oo, while the intervals used in the unweighted one were set to —1-
0.45, 0.45-0.8, and 0.8-1.

5.2. Performance comparison (RQ1)

Fig. 5 shows the performance of different approaches on five
evaluation metrics. As can be seen, our approach exhibits improve-
ments over all competing methods across all ranking positions,
and we further conducted paired t-tests according to the repeti-
tive experimental results, verifying that all improvements are sta-
tistically significant. More specifically, the improvements compared
with PaSRec are significant at the 0.05 level (namely p <0.05),
while the improvements compared with other five approaches are
significant at the 0.01 level (namely p <0.01).

Among the four CF based approaches (CF, SVD, BPR-KNN, and
NCF), NCF performs the best on all evaluation metrics. The limita-
tions of CF, BPR-kNN, and SVD lie in that they cannot accurately
characterize the interactions between mashups and services due
to the high sparsity of the interaction matrix. While NCF adopts
a neural network architecture to capture non-linear relations be-
tween mashups and services, which can more accurately discover
their relations and thus obtain relatively better performance.

As a content-based approach, TF-IDF characterizes the similar-
ities between textual contents of mashups and services and then
recommends similar services for mashups. Experiments show that
TF-IDF performs better than CF, SVD, and BPR-kNN. The results in-
dicate that textual contents of mashups and services can provide
substantial support for service recommendation, which also vali-
dates our hypothesis of incorporating textual contents in service
recommendation.

Moreover, PaSRec, a latest service recommendation method, is
better than the above methods on all metrics. In essence, this ap-
proach is a hybrid approach by integrating contents with CF, which
fully exploits the heterogeneous information network composed of
mashups and services as well as implicit feedbacks. The advan-
tage of PaSRec demonstrates the effectiveness of the hybrid recom-
mendation method in service recommendation. Even though PaS-
Rec leverages more comprehensive information such as providers
of services and mashups, our model DHSR still achieves better per-
formances. Moreover, compared with NCF, a latest deep learning
based recommendation method, DHSR increases by 8.62%, 9.67%,
1.93%, 11.85%, and 3.10%, on MAP@10, NDCG@10, Precision@10, Re-
call@10, and F1@10, respectively, which further validates our hy-
pothesis of incorporating textual content.

5.2.1. Impact of k

DHSR decomposes the mashup-service invocation matrix into
two K-dimensional latent vectors. The setting of K is a key issue
in the model. If K is too large, it may cause overfitting and thus
reduce the generalization ability of the model. However, if it is too
small, the model may be hard to characterize interactions between
mashups and services. To study the effect of K on the recommen-
dation performance, we adjusted K from 4 to 16 with a step size
4, while fixing the other parameters.

As shown in Fig. 6, when K increases from 4 to 8, values of
the metrics are increasing accordingly; but when K continually in-
creases, the recommendation performance is reduced, which sug-
gests that the model has already been overfitting. Therefore, K=8
is the optimal setting for our experiments.

5.2.2. Impact of the percentage of training data

We further compared DHSR with other baseline methods with
respect to different percentages of training data. Specifically, we
randomly chose 80% of the data as the training set (varied from
20% to 80% with a step size 10%) and kept the remaining 20% for
testing in each round. Fig. 7 shows the results of the experiment.
It is obvious that DHSR outperforms other methods on five met-
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Fig. 6. Recommendation performance under different K.

rics with any percentage of the training data. It can also be found
that as the percentage of training data increases, DHSR achieves an
improvement on the recommendation performance. Furthermore,
DHSR and NCF are less sensitive to the sparsity of the training
data compared to PasRec and CF, which can be explained by the
fact that the non-linear nature of DHSR and NCF can alleviate the
sparsity issue of the training data. Not that TF-IDF is not used for
comparison in Fig. 7 because it only calculates the test data and
does not depend on the training data.

5.3. Pointwise vs. pairwise (RQ2)

As mentioned in Section 4.5, two kinds of objective functions,
pointwise loss, and pairwise loss can be used in model learn-
ing. We explored the effectiveness of these objective functions in
service recommendation. In our experiments, pointwise loss func-
tions randomly selected five non-existent interactions as negative
instances for each positive instance, while pairwise loss functions
paired exactly one sampled negative instance with a positive one.
Three kinds of loss functions other than Log Loss were selected for
comparison.

o Squared Loss is a widely used pointwise loss function in model
parameter learning (Hu, Koren, & Volinsky, 2008), which is
based on the assumption that observations are generated from
a Gaussian distribution.

Bayesian Personalized Ranking (BPR) (Rendle et al., 2009) is a
pairwise loss function which is widely utilized in feedback rec-
ommendation to learn model parameters. It has shown a supe-
rior performance in Web service recommendation (Liang et al.,
2016).

AUC Loss, also known as the pairwise-ranking loss and margin
ranking loss (Grangier & Bengio, 2008), is a widely used pair-
wise loss function.

Table 3 shows the effect of different loss functions on service
recommendation performance. It can be found that, in most cases,
the performance of pointwise loss functions is better than that of
pairwise loss functions. This finding can be explained by that the

pointwise method can flexibly set the sampling ratio of negative
instances, especially in our experiments, where the interaction ma-
trix of mashups and services is extremely sparse.

In addition, different Loss functions of the same type also ex-
hibit slight differences in recommendation performance. As can be
seen from Table 3, Log Loss performs better than Squared Loss on
all metrics, which also proves the effectiveness of transforming im-
plicit feedback based service recommendation into a binary classi-
fication problem.

5.4. Will more word embeddings be helpful? (RQ3)

The content component of DHSR aims to extract the functional
similarities between mashups and services by leveraging a variety
of pre-trained word embeddings. We investigated whether more
word embeddings will be helpful in the recommendation perfor-
mance. Towards this end, we used three different word embed-
dings and made a combination of them as the input to our model,
while keeping other conditions unchanged. We use “Loc” to de-
note the method of only using the local Word2vec embedding,
“Loc + Ref-w2v” to denote using “Loc” and a reference Word2vec
embedding, and “Loc + Ref-w2v + Ref-Glv” to denote using a glove
reference word embedding and “Loc + Ref-w2v.”

As shown in Fig. 8, with the increase of the number of word
embeddings, the recommendation performance is gradually im-
proved. We attribute this encouraging result to the fact that more
different kinds of word embeddings introduce more external se-
mantic information, which can help DHSR explore the relations be-
tween mashups and services from more viewpoints.

5.5. Discussions and limitation analysis

To sum up, in the experiments, we adopted five evaluation met-
rics to evaluate the recommendation performance of our proposed
DHSR approach. In the first group of experiments, we showed that
DHSR outperforms six state-of-the-art recommendation algorithms
across all ranking positions. We further analyzed the impact of K,
namely the dimension number in matrix decomposition, on the
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Fig. 7. Performance comparisons on different percentages of training data.
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Table 3
Evaluation results of four kinds of loss functions.
N=5 N=10 N=15 N=20 N=25 N=30 N=35 N=40 N=45 N=50
MAP
Squared Loss 0.3421 0.3636 0.3698 0.3727 0.3747 0.3758 0.3769 0.3777 0.3785 0.3788
Log Loss 0.3411 0.3644 0.3706 0.3739 0.3755 0.3768 0.3779 0.3787 0.3792 0.3796
BPR 0.2944 0.3156 0.3227 0.3267 0.3288 0.3305 0.3314 0.3322 0.3327 0.3333
AUC Loss 0.3134 03356 0.3434 0.3468 0.3489 0.3505 0.352 0.3530 0.3537 0.3542
NDCG
Squared Loss 0.4101 0.4529 0.4691 0.4787 0.4860 0.4906 0.4948 0.4988 0.5028 0.5044
Log Loss 0.4117 0.4553 0.4720 0.4821 0.4877 0.4927 0.4978 0.5013 0.5034 0.5058
BPR 0.3613 0.4048 0.4247 0.4376 0.4458 0.4530 0.4571 0.4607 0.4635 0.4667
AUC Loss 0.3822 0.4268 0.4473 0.4583 0.4660 0.4727 0.4791 0.4836 0.4868 0.4896
Precision
Squared Loss 0.1674 0.1054 0.0774 0.0614 0.0517 0.0444 0.0393 0.0354 0.0326 0.0297
Log Loss 0.1720 0.1083 0.0796 0.0637 0.0528 0.0455 0.0405 0.0364 0.0329 0.0301
BPR 0.1520 0.0985 0.0740 0.0607 0.0511 0.0447 0.0396 0.0325 0.0324 0.0298
AUC Loss 0.1660 0.1051 0.0769 0.0617 0.0517 0.0446 0.0394 0.0355 0.0324 0.0296
Recall
Squared Loss 0.4980 0.6106 0.6615 0.6954 0.7219 0.7399 0.7568 0.7742 0.7904 0.7972
Log Loss 0.5067 0.6183 0.6694 0.7081 0.7337 0.7521 0.7663 0.7790 0.7913 0.8014
BPR 0.4577 0.5705 0.6345 0.6786 0.7102 0.7392 0.7551 0.7697 0.7817 0.7970
AUC Loss 0.4744 0.5908 0.6557 0.6953 0.7243 0.7517 0.7773 0.7697 0.8102 0.8235
F1
Squared Loss 0.2295 0.1681 0.1312 0.1077 0.0925 0.0808 0.0723 0.0656 0.0608 0.0558
Log Loss 0.2340 0.1714 0.1342 0.1111 0.0943 0.0825 0.0742 0.0672 0.0613 0.0565
BPR 0.2091 0.1572 0.1254 0.1062 0.0916 0.0812 0.0727 0.0660 0.0604 0.0560
AUC Loss 0.2271 0.1675 0.1303 0.1081 0.0926 0.0811 0.0724 0.0657 0.0604 0.0555
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Fig. 8. Performance comparisons on different number of word embeddings.

recommendation performance, and found that K=8 is the optimal
setting for our experiments. We also compared DHSR with other
baseline methods with respect to different percentages of training
data and found that DHSR outperforms other methods with any
percentage of training data. In the second group of experiments,
we compared pointwise loss functions and pairwise loss functions
and found that pointwise loss methods have advantages over pair-
wise loss methods. Finally, we investigated whether more word

embeddings will be helpful in the recommendation performance,
and found that more word embeddings do improve the recommen-
dation performance since they introduce more external semantic
information.

There are still some limitations in the proposed approach.
Currently we mainly test the proposed method for the non-
incremental situation. We have not tested the case when new data
is coming. Faced with the new data, different measures will be
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taken depending on the volume of these data. If the volume of
the new data is small, we will keep the embeddings of the trained
data, and only train embeddings on the new data. The weights and
other parameters of the neural network can also be maintained be-
cause it is calculated on the basis of large amounts of data, which
can also be applied to the new small data. If the volume of the
new data is huge, the embeddings and parameters of the neural
network need to be retrained. Even in this case the original text
similarity calculation part can continue to be maintained, which
can decrease the computation time. Determining the threshold of
the volume of coming data and which measure to take depends on
the tradeoff analysis between the algorithm efficiency and the rec-
ommendation performance. We still need to investigate this point
further.

Another limitation of our approach is that it is based on matrix
factorization, which focuses more on the global information of the
matrix and is not sensitive to the local information. In addition,
cold start and gray sheep problems are two inherent shortcom-
ings of CE. Wei, He, Chen, Zhou, and Tang (2017) integrated textual
content features into the prediction of ratings for cold start items.
Ghazanfar and Priigel-Bennett (2014) demonstrated that content-
based profile of gray-sheep users could make accurate recommen-
dations. Similarly, we enrich DHSR with textual content, which can
be used to alleviate these problems to some extent. However, tex-
tual content is only one kind of auxiliary information. There is still
much other heterogeneous information of services and mashups
that can be used, such as the domains and providers of mashups
and users, as mentioned in (Liang et al., 2016). To find better solu-
tions to these two problems, it is necessary to seamlessly integrate
these different kinds of heterogeneous information into our model
in the future.

6. Conclusion and future work

In this paper, we proposed a deep hybrid collaborative filtering
approach for service recommendation (DHSR), which can capture
the complex invocation relations between mashups and services
in Web service recommendation by using a multilayer percep-
tron. Considering that the textual content including descriptions
and tags of services and mashups is also crucial in recommend-
ing services, DHSR further integrated collaborative filtering with
textual content within a deep neural network. We adopted three
kinds of similarity feature extractors to describe semantic similar-
ities between mashups and services and computed the similari-
ties of their textual descriptions by using a variety of pre-trained
word embeddings. Experiments conducted on a real-world dataset
demonstrated that our approach can achieve a significant improve-
ment compared with several state-of-the-art service recommenda-
tion methods.

In the future, we plan to improve our proposed approach by
solving the limitations proposed in Section 5.5. Firstly, we will in-
vestigate the strategy of dealing with new data. Secondly, we will
integrate more heterogeneous information of mashups and services
to improve our model.
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