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a b s t r a c t 

With the rapid development of service-oriented computing and cloud computing, an increasing number 

of Web services have been published on the Internet, which makes it difficult to select relevant Web ser- 

vices manually to satisfy complex user requirements. Many machine learning methods, especially matrix 

factorization based collaborative filtering models, have been widely employed in Web service recommen- 

dation. However, as a linear model of latent factors, matrix factorization is challenging to capture complex 

interactions between Web applications (or mashups) and their component services within an extremely 

sparse interaction matrix, which will result in poor service recommendation performance. Towards this 

problem, in this paper, we propose a novel deep learning based hybrid approach for Web service recom- 

mendation by combining collaborative filtering and textual content. The invocation interactions between 

mashups and services as well as their functionalities are seamlessly integrated into a deep neural net- 

work, which can be used to characterize the complex relations between mashups and services. Experi- 

ments conducted on a real-world Web service dataset demonstrate that our approach can achieve better 

recommendation performance than several state-of-the-art methods, which indicates the effectiveness of 

our proposed approach in service recommendation. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Service-oriented computing (SOC) has significantly affected

oftware development by utilizing services as fundamental build-

ng blocks in constructing low-cost and reliable software applica-

ions. With the rapid evolution of SOC and cloud computing, an

ncreasing number of Web services (mainly in the form of RESTful

eb APIs) have been published on the Internet. For example, over

6,0 0 0 Web services have been published at Programmableweb 1 

PW) by January 1, 2017, almost increased to three times as com-

ared with three years ago. Many Web API marketplaces founded

y famous IT companies like Amazon and Microsoft have also pub-

ished a plenty of Web APIs (we use the two terms, Web service

nd Web API, interchangeably throughout the paper). Since most

ser requirements cannot be satisfied by a single Web service, it is

ecessary to compose existing Web services to offer value-added

ervices (also known as service composition or mashups) for users.

owever, the overwhelming number of Web services makes it dif-

cult to select relevant Web services manually to satisfy complex
∗ Corresponding author. 

E-mail addresses: ruibinxiong@whu.edu.cn (R. Xiong), jianwang@whu.edu.cn (J. 

ang), nengzhang@whu.edu.cn (N. Zhang), ytma@whu.edu.cn (Y. Ma). 
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ser requirements. Therefore, it is vital to proactively and accu-

ately discover suitable Web services according to user requests. 

Web service recommendation refers to the process of proac-

ively discovering relevant Web services that can meet user re-

uests. Currently, matrix factorization based collaborative filtering

odels have been widely employed in Web service recommen-

ation ( Jain, Liu, & Yu, 2015; Liu, Tang, Zheng, Liu, & Lyu, 2016;

amanta & Liu, 2017; Tian, Wang, He, Sun, & Tian, 2017; Zheng,

a, Lyu, & King, 2013 ), which can recommend Web services for

ashup construction or predict service qualities by leveraging ex-

sting usage histories. However, matrix factorization is deemed as a

inear model of latent factors and is thus difficult to capture com-

lex interactions between users and items when the interaction

atrix is highly sparse ( He et al., 2017 ). According to the statis-

ics of PW, the largest Web service registry, the sparsity of the

ashup-service invocation matrix is about 99.83%, which is ex-

remely sparse. How to accurately characterize the complex rela-

ions between mashups and services within an extremely sparse

atrix becomes an intractable issue. 

Recently, deep learning methods have been successfully applied

n recommender systems ( Zhang, Yao, & Sun, 2017 ), due to their

owerful representation learning abilities. They can be used to

earn hidden structures from the interactions of users and items.

nspired by the idea of deep learning based collaborative filter-
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ing technologies ( Cheng et al., 2016; Guo, Tang, Ye, Li, & He, 2017;

He et al., 2017; Paradarami, Bastian, & Wightman, 2017; Xue, Dai,

Zhang, Huang, & Chen, 2017 ), in this paper, we propose a novel

deep hybrid collaborative filtering approach for service recommen-

dation (referred to as DHSR) to capture the complex invocation re-

lations between mashups and services. Since the textual contents

including descriptions and tags of services and mashups are also

crucial in service recommendation, DHSR further integrates collab-

orative filtering with textual content within a deep neural network.

The main contribution of our work is summarized as follows: 

• We propose a novel deep learning based hybrid approach that

combines collaborative filtering and textual content. The in-

vocation interactions between mashups and services as well

as their textual functionalities are seamlessly integrated into a

deep neural network, which can be used to characterize com-

plex relations between mashups and services within an ex-

tremely sparse interaction matrix. 
• We conduct a series of experiments using real-world Web ser-

vices crawled from PW to evaluate the proposed approach. Ex-

perimental results demonstrate that our approach can achieve

better recommendation performance than several state-of-the-

art methods. 

The rest of the paper is organized as follows. Section 2 dis-

cusses the related work. Section 3 formulates the problem of ser-

vice recommendation for mashup development. Section 4 intro-

duces the details of the proposed approach, and Section 5 presents

the experimental results and analysis. Finally, Section 6 summa-

rizes the paper and puts forward our future work. 

2. Related work 

As one of the fundamental research issues in the field of SOC,

Web service recommendation has been widely investigated. The

studies of this area can fall within the scope of three categories:

functionality-based Web service recommendation, social network-

based Web service recommendation, and collaborative filtering-

based Web service recommendation. 

(1) Functionality-based Web service recommendation 

Functionality-based Web service recommendation refers to rec-

ommending services by matching user requests with service de-

scriptions. Earlier studies that use keyword-based service profile

matching usually suffer from poor retrieval performance; there-

fore, many explicit semantics based approaches had been pro-

posed to improve the performance of service matching. These ap-

proaches ( Paliwal, Shafiq, Vaidya, Xiong, & Adam, 2012; Rodriguez-

Mier, Pedrinaci, Lama, & Mucientes, 2016; Roman, Kopecký, Vitvar,

Domingue, & Fensel, 2015 ) leveraged domain ontologies or dictio-

naries to enrich semantics of descriptions of both services and user

requests, and adopted logic-based reasoning for semantic similar-

ity calculation; however, they are limited by manually defining on-

tologies and semantically annotating descriptions, which make it

difficult to be applied to large scale service data. 

Besides these explicit semantics-based approaches, many other

effort s integrate functionality based service recommendation with

machine learning or data mining technologies. Meng, Dou, Zhang,

and Chen (2014) used keywords to indicate user preferences

and recommended services according to their semantic compat-

ibility with user preferences. Zhang, Wang, and Ma (2017) pro-

posed to extract domain service goals from textual descriptions

to meet users’ intentional requests. Yao, Wang, Sheng, Ruan, and

Zhang (2015) presented an approach to service recommendation

based on services’ functional features and the co-invocation among

services. 
(2) Social network-based Web service recommendation 

Social network-based Web service recommendation refers to

tilizing social network relationships of developers or services in

eb service recommendation. For example, Cao, Liu, Tang, Zheng,

nd Wang (2013) integrated user interests and social relations in

ecommending services for mashup development. Chen, Paik, and

ung (2015) designed a social network for service recommenda-

ion by combining multiple relations among users, services, and

opics. Xu, Cao, Hu, Wang, and Li (2013) constructed a global

ocial service network based on complex networks and pro-

osed a service discovery approach based on the service network.

ao, Chen, Wu, and Bouguettaya (2016) presented a service rec-

mmendation method by modeling users’ historical preferences,

unctionalities of services and mashups, as well as invocation re-

ations between mashups and services. Liang, Chen, Wu, Dong, and

ouguettaya (2016) adopted heterogeneous information network to

escribe heterogeneous objects including mashups, services, tags,

nd providers, as well as their relations and further proposed a

eta-path based Web service recommendation method. Their ap-

roach comprehensively analyzed and integrated multiple factors

hat may contribute to the invocation relations between mashups

nd services, and can thus achieve high recommendation perfor-

ance. 

(3) Collaborative filtering (CF)-based Web service recommenda-

tion 

CF-based Web service recommendation refers to recommend-

ng services according to the past composition history, the simi-

arity of users, or the similarity of services. They are firstly used

n quality of service (QoS) prediction, which can be used to select

igh-quality services in Web service recommendation. For exam-

le, Zheng et al. (2013) proposed an approach to predict missing

oS information by using neighborhood integrated matrix factor-

zation. Liu et al. (2016) also presented a location-aware CF method

or QoS-aware Web service recommendation. Tian et al. (2017) pro-

osed a time-aware CF algorithm based on implicit feedback for

eb service recommendation, where three kinds of time effects

ncluding user bias shifting, Web service bias shifting, and user

reference shifting, are integrated into a latent factor model. 

Recently, many hybrid approaches have been proposed to

ecommend services by incorporating multiple factors such

s service invocation history and functionalities. For example,

ao, Sheng, Segev, and Yu (2013) proposed a hybrid approach

y combining CF and content based recommendation, which can

ynamically recommend Web services that fit users’ interests.

ain et al. (2015) incorporated three factors into the service recom-

endation process: APIs’ functionalities, usage history of APIs by

xisting mashups, and popularities of APIs. They leveraged proba-

ilistic topic models, matrix factorization based collaborative filter-

ng, and Bayes’ theorem to recommend APIs for mashup creation.

n their latest work ( Samanta & Liu, 2017 ), they further used the

ierarchical Dirichlet Process (HDP) to discover functionally rele-

ant services based on their specifications, and leveraged Proba-

ilistic Matrix Factorization (PMF) to recommend services based on

sage history and tackle the cold start problem for new mashups

hrough their closest neighbors. 

Unlike existing studies, we proposed a hybrid Web service rec-

mmendation approach by incorporating CF and textual content

ithin a deep neural network. Our approach is a combination

f functionality-based and CF-based Web service recommendation

pproach. A deep learning based recommendation approach for

ong-tail Web services was proposed recently ( Bai, Fan, Tan, &

hang, 2017 ), which exhibited the advantages of applying deep

earning technologies in this field. They leveraged the deep learn-

ng model SDAE (stacked denoising autoencoders) and time infor-

ation to learn feature representations. Their work is mainly a
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ontent-based learning framework, which does not consider the

nteraction between mashups and services from the viewpoint of

atrix factorization. Different from their work, ours mainly tries to

haracterize the complex relations between mashups and services

y integrating collaborative filtering with textual content using a

ultilayer perceptron. 

. Problem statement 

In this section, we present the problem of Web service recom-

endation. In particular, we consider the scenario where a mashup

r a Web application is to be developed. 

Suppose that a developer plans to develop a mashup that can

list the average of bitcoin prices across leading global exchanges,

o serve as a standard retail price reference for industry partici-

ants and accounting professionals.” The developer firstly analyzes

he functional requests of the mashup, and then finds and se-

ects suitable component services that can be integrated into the

ashup. During this process, Web API recommendation technol-

gy can be leveraged to recommend candidate component services.

n this example, the following Web services are actual component

ervices of the mashup: Bitfinex API that provides bitcoin wallets

nd storage, BTC-e API that can trade bitcoins for different curren-

ies worldwide, BitStamp API that supports online exchanges for

itcoins, and Mt Gox API that supports trading between US Dol-

ars and bitcoins. The focus of this paper is on how to recommend

hese services to the developer according to their historical invo-

ations and their textual descriptions, to improve the efficiency in

ashup development. 

More formally, the problem to be addressed in this paper is de-

cribed as follows. Let S be a set of services and M be a set of

ashups. Given the textual description of a mashup to be devel-

ped and some possible component service information (if any),

ow can we recommend suitable services S ′ ⊆S for mashup devel-

pment based on historical interactions between M and S , as well

s their respective textual descriptions? Note that the historical in-

eractions between M and S are a kind of implicit feedbacks, be-

ause the historical interactions only record whether services are

nvoked by mashups without explicitly expressing their feedbacks

ike ratings. 

. DHSR approach 

.1. Approach overview 

In this section, we propose a Deep Hybrid collaborative filtering

pproach for Service Recommendation (called DHSR), which aims

o capture underlying complex interactions between mashups and

ervices according to their invocation history and functionalities.

s depicted in Fig. 1 , DHSR consists of two components: a CF com-

onent and a content component. These two components are rep-

esented by respective feed-forward neural networks, whose last

idden layers are concatenated together. 

More specifically, the CF component decomposes the mashup-

ervice invocation matrix, learns a latent representation of

ashups and services, and models the interactions between them

on-linearly and deeply. The content component firstly transforms

extual descriptions of mashups and services into feature vectors

hat represent their content similarity by utilizing multiple simi-

arity feature extractors and incorporating several pre-trained word

mbeddings. Afterwards, the content component learns the latent

nteractions between mashups and services from the viewpoint of

extual content by a neural network. Finally, to combine these two

omponents, we concatenate their last hidden layers and then feed

hem into a three-layer neural network. The parameters of the

hole model are trained jointly. 
.2. The CF component 

In essence, the CF component learns non-linear interaction

unction F , latent feature matrix of mashups P and latent feature

atrix of services Q , and estimates the interaction r ms between

ashup m and service s , as defined in Eq. (1) . 

ˆ 
 ms = F ( m, s | P , Q , �) , (1)

here � denotes the parameters of F . Moreover, the traditional MF

odel can be deemed as a linear model of latent factors ( He et al.,

017 ), as shown in Eq. (2) , 

ˆ 
 ms = p m 

T q s = 

K ∑ 

k =1 

p mk q sk , (2) 

here K denotes the dimension of the latent feature vector. In

ontrast, the CF component uses a multilayer perceptron (MLP) to

earn the interaction function F , which is naturally non-linear. 

As depicted in Fig. 1 , one-hot encodings of mashup m and ser-

ice s chosen from the mashup-service invocation matrix are fed

nto the CF component. Details of the CF component are described

s follows. The identifiers of the input mashups and services are

rstly transformed into sparse binary vectors with one-hot encod-

ngs (for example, [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …, 0]), and then trans-

ormed into dense vectors, which can be viewed as latent features

f mashups and services in the context of latent factor model. To-

ards this end, we use a fully connected layer, also known as an

mbedding layer, as the first hidden layer. The architecture of the

mbedding layer is shown in Fig. 2 . 

Two input vectors x M 

m 

and x S s , represented in sparse binary vec-

ors, denote the current mashup and service encoded using one-

ot encodings, whose sizes are M and S , respectively. The identity

unction is used as the activation function in the embedding layer.

 m 

= f 
(
x M 

m 

| P ) = P T x M 

m 

, l s = f 
(
x S s | Q 

)
= Q 

T x S s (3)

here P ∈ R 

M×K , Q ∈ R 

S×K , and K denotes the size of the hid-

en layer. The embedding layer can be viewed as a lookup table,

hose values are weights P and Q of its edges. The outputs of the

mbedding layer are represented as: 

 m 

= [ p m 1 , p m 2 , . . . , p mk ] , l s = [ q s 1 , q s 2 , . . . , q sk ] (4) 

Following this setting, the one-hot encodings of mashups and

ervices are compressed into dense vectors, named as mashup em-

eddings and service embeddings. In this work, P and Q are ini-

ialized with a Gaussian distribution, and are jointly learned with

ther parts of the neural network. 

Next, l m 

and l s are concatenated and fed into a deep neural net-

ork. More formally, the forward propagation process is defined

s: 

l 1 = f 

(
W 

T 
1 

[
l m 

l s 

]
+ b 1 

)
, 

l i = f 
(
W 

T 
i l i −1 + b i 

)
, i = 2 , . . . , N, 

 

CF = l N , 

(5) 

here l i ( i = 1, …, N ) denotes an intermediate hidden layer, W i de-

otes the i th weight matrix, b i denotes the i th bias term, r CF denotes

he output of the last hidden layer of the CF component, and f de-

otes the activation function. In this work, we use rectified linear

nit (ReLU), which has been widely used in deep learning, as the

ctivation function of the hidden layers: 

f ( x ) = max ( 0 , x ) . (6) 

.3. The content component 

As depicted in Fig. 1 , the content component with the objec-

ive of learning interactions between mashups and services in the
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Fig. 1. Architecture of DHSR. 

Fig. 2. Substructure of the CF component. 
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content field consists of two parts: a similarity calculation part

and a Deep Neural Network (DNN) part. Referring to the work in

( Kenter & Rijke, 2015 ), the similarity of textual descriptions be-

tween mashups and services can be calculated by using arbitrary

numbers of pre-trained word embeddings. 

4.3.1. Similarity calculation part 

Given textual description t M 

m 

of mashup m , textual description t S s 

of service s and word embedding E , we can extract multiple sim-

ilarity features to describe semantic similarities between m and s .

Three kinds of similarity feature extractors are considered. To il-

lustrate the process of extracting similarity features, we use the

example described in Section 3 , in particular the similarity calcu-

lation between mashup “CoinDesk BPI” ( m ) and service “BitStamp

HTTP” ( s ), as shown in Fig. 3 . 
(1) Feature extractor on the weighted semantic similarity

f e ws ( t 
M 

m 

, t S s , E ) 

The weighted semantic similarity assumes that the terms in a

ext are not equally important, and the importance of a term can

e measured by its inverse document frequency (IDF). To capture

ner-grained similarity features, we set multiple intervals for the

eighted semantic similarity features. Detailed process of calculat-

ng fe ws is described as follows. 

We firstly calculate the semantic similarity between each term

 in the longer text and the shorter text t under a given word em-

edding E , which is defined as the maximum of cosine similarities

etween embedding vectors of w and each term in t. 

em ( w, t, E ) = MAX ( { cosineSim 

(
E ( w ) , E 

(
w 

′ ))∣∣w 

′ ∈ t} ) , (7)
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Fig. 3. Illustration of the similarity calculation process. 
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osi neSim 

(
E ( w ) , E 

(
w 

′ )) = 

E ( w ) · E 
(
w 

′ )
‖ E ( w ) ‖‖ E ( w 

′ ) ‖ 

, (8) 

here E ( w ) denotes the embedding vector of term w under em-

edding E , and MAX ( S ) denotes the maximum of set S . In other

ords, we calculate sem ( w, t S s , E ) (or sem ( w, t M 

m 

, E ) , if | t M 

m 

| < | t S s | )
or each term w in t M 

m 

(or t S s ). 

Next, we assign these values of sem to predefined intervals, and

hen calculate the weighted semantic similarity fe ws ( w , t, E ) be-

ween w and t . 

f e ws ( w, t, E ) = IDF ( w ) · sem ( w, t, E ) · ( k + 1 ) 

sem ( w, t, E ) + k ·
(
1 − b + b · | t | 

a v gl 

) , 

(9) 

here IDF ( w ) denotes the IDF value of term w, avgl denotes the

verage length of descriptions of all mashups and services, k and b

re smooth parameters, and | t | denotes the length of t . 

Finally, the values of fe ws ( w , t, E ) within each interval are aver-

ged to obtain a finer-grained similarity feature. 
Example. We set the intervals used in the weighted semantic

imilarity as: −1–0.15, 0.15–0.4, 0.4–0.8, and 0.8–∞ , as described

n Section 5.1 . As shown in Step 1.1 of Fig. 3 , since the description

f service s is longer than that of mashup m , we firstly calculate

emantic similarities ( sem ) between each term w in the descrip-

ion of s with the description of m according to Eq. (7) . The result

s {0.1852, 0.5426, 0.8845, 1.0 0 0 0, 0.3254, 0.2623, 0.7842, …}. Each

imilarity value of sem will be assigned to one of the four inter-

als. For example, {0.5426, 0.6655, 0.7842, …} is assigned to inter-

al 0.4–0.8. Afterwards, fe ws will be calculated according to Eq. (9) .

inally, the values of fe ws within each interval are averaged. In this

ay, the weighted semantic similarity vector between m and s can

e represented as [0.8762, 2.4001, 5.0168, 4.1029]. 

(2) Feature extractor on the unweighted semantic similarity

f e un ( t 
M 

m 

, t S s , E ) 

The unweighted semantic similarity assumes that the terms in

 text are equally important. We firstly calculate the value of cosi-

eSim ( E ( w ), E ( w 

′ )) for each term pair w ∈ t M 

m 

and w 

′ ∈ t S s ac-

ording to Eq. (8) , and then assign these values of cosineSim ( E ( w ),
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Algorithm 1 Similarity calculation for mashups and services. 

Input: functional description t M m of mashup m , functional description t S s of service s , sets of word embeddings E i ( i = 1, 2, …, N ) 

Output: similarity Sim m,s between mashup m and service s 

1. set Sim m,s to empty feature vector; 

2. for i from 1 to N do 

3. calculate f e ws ( t M m , t 
S 
s , E i ) with multiple intervals; 

4. calculate f e un ( t M m , t 
S 
s , E i ) with multiple intervals; 

5. calculate f e mts ( t 
M 
m , t 

S 
s , E i ) ; 

6. concatenate Sim m,s with f e ws ( t 
M 
m , t 

S 
s , E i ) , f e un ( t 

M 
m , t 

S 
s , E i ) , and f e mts ( t 

M 
m , t 

S 
s , E i ) ; 

7. end for 
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E ( w 

′ )) to predefined intervals. Finally, we take the average of values

within each interval to obtain a finer-grained similarity feature. 

Example. We set the intervals used in the unweighted seman-

tic similarity as: −1–0.45, 0.45–0.8, and 0.8–1, as described in

Section 5.1 . As shown in Step 1.2 of Fig. 3 , we firstly calculate the

cosine similarities ( cosineSim ) of all term vectors between m and s .

Next, each value of cosineSim will be assigned to one of the three

intervals, respectively. Finally, the values within each interval are

averaged, and the unweighted semantic similarity vector is [0.2199,

0.5531, 0.9843]. 

(3) Feature extractor on the mean term similarity

f e mts ( t 
M 

m 

, t S s , E ) 

The mean term similarity takes the average of embedding vec-

tors for each term in t M 

m 

and t S s , respectively; and then calculates

their cosine similarity. 

f e mts 

(
t M 

m 

, t S s , E 
)

= cosineSim 

( ∑ 

w ∈ t M m 

E ( w ) 

len 

(
t M 

m 

) , 
∑ 

w ∈ t S s 

E ( w ) 

len 

(
t S s 

)
) 

. 

(10)

Please note that the mean term similarity cannot be further

classified into more similarity features since it takes the average

of term vectors within each text in advance. 

Example. As shown in Step 1.3 of Fig. 3 , we firstly transform

the embedding vectors of m and s , and then calculate the cosine

similarity between two new vectors using Eq. (10) . The result is

0.7854. 

Finally, these similarity features are concatenated to construct a

new vector. 

Example. As shown in Step 2 of Fig. 3 , we concatenate these

three types of similarities and get a feature vector of length eight

[0.8762, 2.4001, 5.0168, 4.1029, 0.2199, 0.5531, 0.9843, 0.7854] to

represent the similarity between m and s under embedding E . 

Moreover, we further consider more kinds of word embeddings

to construct more feature vectors of similarities, which will be fi-

nally concatenated together and fed into a deep neural network.

The detailed process of calculating the similarity Sim m,s between

mashup m and service s is described in Algorithm 1 . 

4.3.2. DNN part 

Once Sim m,s is obtained from the similarity calculation part, it is

fed into a deep neural network. More formally, the forward propa-

gation process is defined as follows: 

l 1 = f 
(
W 

T 
1 Si m m,s + b 1 

)
, 

l i = f 
(
W 

T 
i l i −1 + b i 

)
, i = 2 , . . . , L, 

r Cont ent = l L , 

(11)

where l i , W i , and b i ( i = 1, …, L ) denote the i th intermediate hidden

layer, weight matrix and bias term, respectively. Here we still use

ReLU as the activation function of the hidden layers. 
.4. Combination of the two components 

The CF component and the content component are combined

y concatenating their last hidden layers and then fed into a new

idden layer to learn the interaction between them non-linearly.

e use the sigmoid function as the activation function of the out-

ut layer for implicit feedback prediction, and use ReLU as the ac-

ivation function of the hidden layer. The output of the sigmoid

unction in the output layer, in other words, the probability of a

ervice to be invoked by a mashup, can be seen as the result of

ervice recommendation. 

The forward propagation of the whole model can be formally

escribed as follows. 

r CF = f 

(
W 

T 
1 ,N 

(
. . . f 

(
W 

T 
1 , 1 

[
P T x M 

m 

Q 

T x S s 

]
+ b 1 , 1 

)
. . . 

)
+ b 1 ,N 

)
, 

 

Cont ent = f 
(
W 

T 
2 ,L 

(
. . . f 

(
W 

T 
2 , 1 Si m m,s + b 2 , 1 

)
. . . 

)
+ b 2 ,L 

)
, 

ˆ r ms = σ

(
W 

T 
3 , 2 

(
f 

(
W 

T 
3 , 1 

[
r CF 

r Cont ent 

]
+ b 3 , 1 

)
+ b 3 , 2 

))
, 

(12)

here W 1, i and b 1, i denote the i th weight matrix and the bias term

f the CF component, W 2, i and b 2, i denote the i th weight matrix and

he bias term of the content component, and W 3, i and b 3, i denote

he i th weight matrix and the bias term of the combination layer.

 and L denote the numbers of hidden layers of the CF component

nd the content component, respectively. ˆ r ms denotes the predic-

ion of the implicit feedback. 

.5. Model learning and prediction 

In a recommendation model, the objective function is used to

etermine how the model training penalizes deviations between

redicted values and the ground truth, which can significantly af-

ect the recommendation performance. 

Pointwise and pairwise are two types of loss functions com-

only used in recommender systems. The pointwise loss function

elects a single instance each time and transforms the recommen-

ation task into a regression or classification problem. Squared loss

nd log loss ( He et al., 2017 ) are two typical loss functions of

his type. The pairwise loss functions, such as Bayesian person-

lized ranking (BPR) ( Rendle, Freudenthaler, Gantner, & Schmidt-

hieme, 2009 ) and AUC loss, select a pair of instances each time

nd transform the recommendation task into a pairwise classifica-

ion problem. Both the two kinds of functions can be applied in

eb service recommendation. When applying pointwise loss, we

se all invocation relations between mashups and their component

ervices as positive instances and sample negative instances from

nobserved mashup-service invocation relations uniformly by con-

rolling a negative sampling ratio (denoted as nsr) . When applying

airwise loss, we pair exactly one sampled negative instance with

 positive one and optimize model parameters to make the posi-

ive instance always ranked higher than the negative one. Specifi-

ally, for any mashup m and one of its component services s (that

s, r ms = 1), we uniformly sample an un-invoked service n (that is,
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Algorithm 2 Training Algorithm of DHSR. 

Input: sets of word embeddings E i ( i = 1, 2, …, N ), sets of similarity feature 

extractors f ei ( i = 1, 2, …, L ), set of mashup descriptions t M , set of service 

descriptions t S , mashup-service invocation matrix R , negative sampling ratio 

nst , number of epochs Epochs , and batch size bts. 

Output: Weight matrices and bias terms P , Q , W 1 , W 2 , W 3 , b 1 , b 2 , b 3 . 

1. initialize P , Q , W 1 , W 2 , W 3 according to Gaussian distribution; 

2. initialize b 1 , b 2 , b 3 to 0 ; 

3. uniformly sample unobserved invocations as R − according to nst ; 

4. set R + to all observed invocations and set R to R + ∪ R −; 

5. for epoch = 1 , …, Epochs do 

6. shuffle R and partition R into R 1 ,…, R t according to bts ; 

7. for iter = 1, …, t do 

8. for each mashup m and service s in R iter do 

9. compute l m and l s according to Eq. (3); 

10. compute r CF according to Eq. (5); 

11. compute Sim m,s using Algorithm 1; 

12. compute ˆ r ms according to Eq. (12); 

13. end for 

14. optimize model parameters using Adam; 

15. end for 

16. end for 
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 mn = 0) to form a triplet ( m, s, n ). Note that predicted rating ˆ r ms 

hould be higher than ˆ r mn . 

The pointwise loss can flexibly set the sampling ratio of neg-

tive instances , while the pairwise loss can only pair a negative

nstance with a positive one. Therefore, pointwise is better than

airwise in some recommendation scenarios ( He et al., 2017 ), par-

icularly in the service recommendation field where the number

f services used by each mashup is very small, and the interac-

ion matrix is thus extremely sparse. According to this consider-

tion, we use log loss, which is the binary cross-entropy, as the

oss function of our model. Moreover, we use L 2 regularization to

revent model overfitting. The cost function J to be minimized is

efined as follows. 

 = −
∑ 

( m,s ) ∈ R + ∪ R −
r ms log ̂ r ms + ( 1 − r ms ) log 

(
1 − ˆ r ms 

)
+ 

λ

2 

‖ � ‖ 

2 
2 , 

(13) 

here R + denotes the set of positive instances, R − denotes the set

f negative instances, λ is the regularization parameters, and � is

he weights of edges. 

We use the mini-batch Adaptive Moment Estimation (Adam)

 Kingma & Ba, 2014 ) to learn our proposed model. The total train-

ng process of DHSR is described in Algorithm 2 . The derivative

f the model can be calculated with back-propagation, which are

mitted in this paper. 

Once the model is learned, we can conduct model prediction

ccording to user requests in mashup development. For a given

equest of mashup m , the recommendation procedure can be de-

cribed as follows. We firstly calculate the score between m and

ach candidate service s in the training set according to Eq. (12) ,

hich represents the probability of s being recommended to m .

fterwards, all the scores are sorted and the top N services are fi-

ally recommended for the development of mashup m . 

We still use the example in Section 3 to illustrate the train-

ng and recommendation processes. Because the major steps of the

wo processes are very similar except that the training process in-

ludes a step of model parameter optimization, we only show how

he model can recommend services for a given mashup (e.g., “Coin-

esk BPI”, denoted as m ). At this stage, the scores between “Coin-

esk BPI” and all services in the registry should be calculated by

HSR, and N services with the top scores will be selected as the

ecommendation result. We use the calculation process between

ervice “BitStamp HTTP” ( s ) and the mashup m for illustration, as

hown in Fig. 4 . 
Step 1: The first step is to obtain the score vectors of the CF

component and the content component, which are detailed

in the following two sub-steps, respectively. 

Step 1.1: In the CF component, the one-hot encodings of m and

s : [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …, 0] and [0, 0, 0, 0, 0, 0,

1, 0, 0, 0, …, 0], are firstly transformed into dense latent

vectors: [ −1.2563e-16, −1.1837e-24, −2.7764e-24, −1.4276e-

24, −2.5638e-15, −2.9917e-15, −5.1344e-25, 1.0564e-35] 

and [ −0.2098, −0.2515, −0.1788, −0.2060, −0.2366, 0.2042,

−0.2030, −0.1895], respectively. Afterwards, the two vectors

are concatenated and their concatenation is then fed into an

MLP to obtain the score vector r CF of the CF component us-

ing Eq. (5) . The result of r CF is: [0.0185, 0.1489, 0.1678, 0.1311,

0.1703, 0, 0.1771, 0.0331, 0, 0.1794, 0.0348, 0.1880, 0, 0.2106,

0, 0]. 

Step 1.2: In the content component, the similarities between

their textual descriptions are firstly calculated and con-

catenated, resulting in a similarity feature vector: [0.8762,

2.4001, 5.0168, 4.1029, 0.2199, 0.5531, 0.9843, 0.7854, 0,

2.6780, 3.9239, 4.9650, 0.2561, 0.5683, 0.9271, 0.7136, 0,

2.4982, 5.0871, 4.2298, 0.2255, 0.5714, 0.9731, 0.7412]. Af-

terwards, the similarity feature vector is fed into an MLP to

obtain the score vector r Content of the content component us-

ing Eq. (11) . The result of r Content is: [0.8649, 1.1665, 1.4680,

0.8577, 0.5067, 0.0135, 0.4424, 0.0464, 0.1132, 0.6547, 1.0098,

0.4218]. 

Step 2: Two score vectors r CF and r Content are concatenated and

fed into an MLP to calculate ˆ r ms using Eq. (12) . ˆ r ms de-

notes the predicted probability of service s to be invoked by

mashup m . The result of ˆ r ms in this example is 0.8640. 

Step 3: Similarly, we can predict a list of similarity scores be-

tween the mashup m and all other services in the service

registry, e.g., {0.8640, 0.0293, 0.1073, 0.0856, 0.1423, 0.0260,

0.3434, 0.1151, 0.8566, …}, and finally the services with top

scores can be recommended for m . Please note that this step

is not shown in Fig. 4 since Fig. 4 only illustrates the calcu-

lation process of a mashup with a service. 

.6. Computational complexity analysis 

We further analyze the computational complexity of the pro-

osed approach. For each epoch, the similarity calculation of

he content component costs about O( avgsl ∗avgml ∗E ∗( nst + 1) ∗I ),

here avgsl is the average length of the service description, avgml

s the average length of the mashup description, E is the number of

ord embeddings, nst is the negative sampling ratio, and I is the

umber of observed ratings. Among these parameters, avgsl and

vgml are close to a constant. In the data set we used in experi-

ents, the average lengths of services and mashups are 42.91 and

2.87, respectively. E is set to 3 in our experiments, which can also

e viewed as a constant if the experimental setting is fixed. nst

s another constant during experiment setting. Therefore, the cost

f the similarity calculation is approximately linear to the num-

er of observed ratings in the interaction matrix. Note that the

omplexity listed here is the maximum possible value because the

alculated similarities can be cached for calculation in subsequent

pochs. 

Referring to the complexity analysis of the neural network

 Kim, Park, Oh, Lee, & Yu, 2016 ), the computational complexity of

he neural network part of our model can be seen as scaling lin-

arly with the size of given data when all parameters, such as the

umber of layers and the number of neurons, are fixed. There-

ore, if experimental parameters of the neural network are fixed,

he computation time of the entire optimization process of DHSR

rows approximately linearly with respect to the size of given data.
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Fig. 4. Illustration of the DHSR-based service recommendation process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Example of mashups and services in the dataset. 

Attribute Value 

(a) Mashup “CoinDesk Bitcoin Price Index (BPI)”

Mashup name CoinDesk Bitcoin Price Index (BPI) 

Category Bitcoin, Currency, Prices 

Component services Mt Gox, BitStamp HTTP, BTC-e, Bitfinex 

Description “The CoinDesk Bitcoin Price Index (BPI) 

represents an average of bitcoin 

prices across leading global 

exchanges that meet criteria 

specified by the BPI. …”

(b) Service “BitStamp HTTP”

Name BitStamp HTTP 

Category Financial, Currency, Marketplace 

Description “BitStamp is an online exchange for 

bitcoins. Online consumers and 

traders can use it as a global 

marketplace to buy and sell BitCoins. 

…”

Table 2 

Statistics of the dataset. 

Statistics Value 

Number of services 13,520 

Number of mashups 5769 

Average number of services in mashups 1.90 

Number of mashup-service interaction 10,950 

Vocabulary size 27,831 

Average number of word tokens in services 42.91 

Average number of word tokens in mashups 22.87 

Average number of categories of mashups and services 3.39 
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The complexity analysis shows that our proposed approach can be

applied in large-scale systems. 

5. Experiments 

In this section, we conducted a series of experiments to evalu-

ate the proposed DHSR based on a real-world Web service dataset.

These experiments were designed to answer the following three

research questions: 

• RQ1 : Does the proposed DHSR outperform the state-of-the-art

Web service recommendation methods? 
• RQ2 : Which kind of objective functions, pairwise loss or point-

wise loss, is better for the service recommendation task? 
• RQ3 : Will the recommendation result be affected by adding the

number of word embeddings? 

5.1. Experimental settings 

We conducted a series of experiments to evaluate our proposed

approach. All the experiment programs were developed in Python,

and carried out on a PC with Intel Core 4 CPU i7-4710HQ, @2.5 GHz

and 8GB RAM, running the Windows 10 OS. 

5.1.1. Dataset 

Statistics of the dataset. ProgrammableWeb (PW) is by far the

largest online Web service and mashup registry. To evaluate the

performance of the proposed DHSR, we crawled a dataset from

PW on July 25, 2016. The dataset consists of 13,520 services and

5,769 mashups. Because we are only interested in the services in-

voked by at least one mashup, and many services have been dep-

recated, the dataset was thus reduced to containing 5,769 mashups

and 1,103 services. The sparsity of the interaction matrix in the

dataset is about 99.83%. The dataset contains descriptions and tags

(including the primary and secondary categories) of mashups and

services and the invocation relations between them. For example,

Table 1 shows a mashup and a service in the dataset, where ser-

vice “BitStamp HTTP” is a component service of mashup “CoinDesk

Bitcoin Price Index (BPI).” Table 2 illustrates the detailed statistial

information of the dataset. 
Dataset preparation. In our dataset, the functionalities of

ashups and services are embodied in their textual descriptions

nd tags (also knowns as categories). Considering that the tags are

anually added by the PW administrators and are thus more valu-

ble in identifying services or mashups, we used amplification co-

fficient α to amplify the weights of tags and combined them with

extual descriptions to construct a functional description corpus.

fterwards, we performed the following steps to preprocess the

xtracted corpus. 



R. Xiong et al. / Expert Systems With Applications 110 (2018) 191–205 199 

 

 

 

 

 

 

e  

w  

b  

b  

g  

t  

t  

&  

c  

v  

i  

v  

t  

i  

a  

t  

(  

m  

m  

c  

W  

a  

m  

t

 

f  

p  

l  

n  

t  

i  

o  

o  

q  

r  

p  

e

5

 

o

 

l

M

w

d  

t  

s  

a

 

v

N

w  

a

 

i

P

R

F  

w  

t  

t

5

 

f  

t  

g  

b  

p

 

 

 

 

 

 

 

 

 

 

5

 

w  

p  

w  

a  

T  

G  

0  

t  

0  

a  

t  

n  

a  
• Spelling correction . We leveraged PyEnchant, 2 an English spell

checking library for Python, to replace misspelled words. 
• Tokenization . The NLTK 

3 toolkit was used to obtain lists of

words (also known as tokens) from the input corpus. 
• Stopword removal . The built-in stopword list in the NLTK

toolkit was utilized to remove the common words frequently

occurred in written English. 
• Lemmatization . We used the WordNet 4 Lemmatizer packaged

in the NLTK toolkit to reduce all words to their root forms. 

After preprocessing the dataset, we further prepared the word

mbeddings for subsequent calculation. We used two kinds of

ord embeddings. The first is the publicly released word em-

eddings, referred to as reference embeddings. The reference em-

eddings we used are described as follows. The word embedding

enerated in ( Baroni, Dinu, & Kruszewski, 2014 ) consists of vec-

ors with 400-dimensional, 5-word context window, and 10 nega-

ive samples; and the Glove word embedding ( Pennington, Socher,

 Manning, 2014 ) consists of 840 billion tokens, 2.2 million vo-

abularies, and 300-dimensional vectors. To deal with out-of-

ocabulary words, we adopted two strategies. The first strategy

s dividing the compound words and summing their embedding

ectors. For example, compound word “crypto-currency” can be

ransformed into the sum of E(“crypto” ) and E(“currency ”). The

ntuition behind this strategy is that the distributional semantic

pproach such as Word2vec, can capture the deep-level seman-

ic information and subtle semantic relationships between words

 Mikolov, Chen, Corrado, & Dean, 2013 ). The second strategy is to

ap terms to random vectors, which is widely applied in text

ining. Moreover, we trained a word embedding on the service

orpus on our own, referred to as the local embedding. We used

ord2vec to train the local embedding, and adopted Skip-gram

s the architecture and hierarchical softmax as the optimization

odel. The window width and the vector dimensionality were set

o 5 and 80, respectively. 

Training set and test set. To evaluate the recommendation per-

ormance, we constructed a training set and a test set for each ex-

eriment based on the crawled dataset. Firstly, we randomly se-

ected 30% of the mashups that include more than one compo-

ent service as the test set, and the rest mashups were used as

he training set. Note that we randomly selected 10% of the train-

ng set as the validation set. Then, for each mashup in the test set,

ne service was randomly selected from the component services

f the mashup. The selected services were included in mashup re-

uirements (namely they acted as a part of user input) while the

emaining services of each mashup in the test set were used for

rediction. Each experiment was performed 20 times, and their av-

rage values were taken as reported results. 

.1.2. Evaluation metrics 

In the experiments, we adopted five metrics to evaluate the rec-

mmendation performance of DHSR. 

Mean Average Precision (MAP) at top N services in the ranking

ist is defined as: 

AP @ N = 

1 

| M | 
∑ 

m ∈ M 

1 

N m 

N ∑ 

i =1 

(
N i 

i 
· I ( i ) 

)
, (14) 

here N m 

is the number of component services of mashup m, N i 

enotes the number of component services of m occurred in the

op i services of the ranking list, M is the mashups in the test

et, and I ( i ) indicates whether the service at ranking position i is

 component service of m . 
2 https://pythonhosted.org/pyenchant/ . 
3 http://www.nltk.org/ . 
4 http://wordnet.princeton.edu/ . 

t  

t  
Normalized Discounted Cumulative Gain (NDCG) at top N ser-

ices in the ranking list is defined as: 

DCG @ N = 

1 

| M | 
∑ 

m ∈ M 

1 

S m 

N ∑ 

i =1 

2 

I ( i ) − 1 

log 2 ( 1 + i ) 
, (15) 

here S m 

represents the ideal maximum DCG score that can be

chieved for m . 

Precision, Recall and F1-measure at top N services in the rank-

ng list are defined as: 

recision @ N = 

1 

| M | 
∑ 

m ∈ M 

| rec ( m ) ∩ truth ( m ) | 
| rec ( m ) | , (16) 

ecall @ N = 

1 

| M | 
∑ 

m ∈ M 

| rec ( m ) ∩ truth ( m ) | 
| truth ( m ) | , (17) 

1@ N = 

1 

| M | 
∑ 

m ∈ M 

2 

| rec ( m ) ∩ truth ( m ) | 
| rec ( m ) | + | truth ( m ) | , (18)

here rec ( m ) is a recommended service list for mashup m , and

ruth ( m ) is a set of services that have interactions with m in the

est set (namely the actual component services of m ). 

.1.3. Competing approaches 

We chose several state-of-the-art recommendation algorithms

or comparison. Considering that our approach incorporates tex-

ual information and collaborative filtering (CF), these selected al-

orithms cover CF method, matrix factorization method, content-

ased method, and hybrid method, to make a comprehensive com-

arison. 

• CF ( Xu et al., 2013 ). CF is a classical recommendation technique

that has been widely used in many recommendation systems.

We implemented user-based CF in our experiment. 
• SVD ( Paterek, 2007 ). SVD is a classical matrix factorization

technique used in recommender systems. 
• BPR-kNN ( Rendle et al., 2009 ). BPR-kNN uses BPR to learn

service recommendation models from the implicit feedback of

mashups with a pairwise ranking loss. 
• NCF ( He et al., 2017 ). Neural Collaborative Filtering (NCF)

is adopted to capture the non-linear relationship between

mashups and services and recommend relevant services. 
• TF-IDF ( Xia et al., 2015 ). Services are recommended according

to TF-IDF based cosine similarities with mashup requests. 
• PaSRec ( Liang et al., 2016 ). PaSRec learns a CF based service

recommendation model with implicit feedback of mashup using

BPR. 

.1.4. Parameter settings 

We implemented our proposed approach based on Keras, 5 a

idely adopted deep learning library. To ensure that the hyper-

arameters of DHSR can obtain the best recommendation result,

e randomly sampled an interaction for each mashup to construct

 cross-validation set and tuned the hyper-parameters accordingly.

he model parameters were randomly initialized by following a

aussian distribution with a mean of 0 and standard deviation of

.01. According to the result of parameter tuning, the batch size,

he learning rate, and the number of latent factors was set to 8,

.001, and 8, respectively. Similar to most neural networks, the

rchitecture of our network model is designed by following the

ower pattern, where each upper layer has a smaller number of

eurons than its lower layer. Because the size of PW dataset is rel-

tively small, setting too many hidden layers will result in overfit-

ing, and thereby reduce the performance of service recommenda-

ion. We set the layer number of the CF component to 4 (including
5 https://keras.io/ . 

https://pythonhosted.org/pyenchant/
http://www.nltk.org/
http://wordnet.princeton.edu/
https://keras.io/
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Fig. 5. Performance comparisons of different approaches on the test set. 
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the embedding layer), the layer number of the content component

to 3, and regularization parameter λ to 0.01, respectively. 

In our experiments, we set amplification coefficient α to 2. In

the similarity calculation part of the content component, we also

tuned parameters to achieve optimized results. k and b were set

to 1.2 and 0.75, respectively. The intervals used in the weighted

semantic similarity were set to −1–0.15, 0.15–0.4, 0.4–0.8, and 0.8–

∞ , while the intervals used in the unweighted one were set to −1–

0.45, 0.45–0.8, and 0.8–1. 

5.2. Performance comparison (RQ1) 

Fig. 5 shows the performance of different approaches on five

evaluation metrics. As can be seen, our approach exhibits improve-

ments over all competing methods across all ranking positions,

and we further conducted paired t -tests according to the repeti-

tive experimental results, verifying that all improvements are sta-

tistically significant. More specifically, the improvements compared

with PaSRec are significant at the 0.05 level (namely p < 0.05),

while the improvements compared with other five approaches are

significant at the 0.01 level (namely p < 0.01). 

Among the four CF based approaches (CF, SVD, BPR-kNN, and

NCF), NCF performs the best on all evaluation metrics. The limita-

tions of CF, BPR-kNN, and SVD lie in that they cannot accurately

characterize the interactions between mashups and services due

to the high sparsity of the interaction matrix. While NCF adopts

a neural network architecture to capture non-linear relations be-

tween mashups and services, which can more accurately discover

their relations and thus obtain relatively better performance. 

As a content-based approach, TF-IDF characterizes the similar-

ities between textual contents of mashups and services and then

recommends similar services for mashups. Experiments show that

TF-IDF performs better than CF, SVD, and BPR-kNN. The results in-

dicate that textual contents of mashups and services can provide

substantial support for service recommendation, which also vali-

dates our hypothesis of incorporating textual contents in service

recommendation. 
Moreover, PaSRec, a latest service recommendation method, is

etter than the above methods on all metrics. In essence, this ap-

roach is a hybrid approach by integrating contents with CF, which

ully exploits the heterogeneous information network composed of

ashups and services as well as implicit feedbacks. The advan-

age of PaSRec demonstrates the effectiveness of the hybrid recom-

endation method in service recommendation. Even though PaS-

ec leverages more comprehensive information such as providers

f services and mashups, our model DHSR still achieves better per-

ormances. Moreover, compared with NCF, a latest deep learning

ased recommendation method, DHSR increases by 8.62%, 9.67%,

.93%, 11.85%, and 3.10%, on MAP@10, NDCG@10, Precision@10, Re-

all@10, and F1@10, respectively, which further validates our hy-

othesis of incorporating textual content. 

.2.1. Impact of k 

DHSR decomposes the mashup-service invocation matrix into

wo K -dimensional latent vectors. The setting of K is a key issue

n the model. If K is too large, it may cause overfitting and thus

educe the generalization ability of the model. However, if it is too

mall, the model may be hard to characterize interactions between

ashups and services. To study the effect of K on the recommen-

ation performance, we adjusted K from 4 to 16 with a step size

, while fixing the other parameters. 

As shown in Fig. 6 , when K increases from 4 to 8, values of

he metrics are increasing accordingly; but when K continually in-

reases, the recommendation performance is reduced, which sug-

ests that the model has already been overfitting. Therefore, K = 8

s the optimal setting for our experiments. 

.2.2. Impact of the percentage of training data 

We further compared DHSR with other baseline methods with

espect to different percentages of training data. Specifically, we

andomly chose 80% of the data as the training set (varied from

0% to 80% with a step size 10%) and kept the remaining 20% for

esting in each round. Fig. 7 shows the results of the experiment.

t is obvious that DHSR outperforms other methods on five met-
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Fig. 6. Recommendation performance under different K . 
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ics with any percentage of the training data. It can also be found

hat as the percentage of training data increases, DHSR achieves an

mprovement on the recommendation performance. Furthermore,

HSR and NCF are less sensitive to the sparsity of the training

ata compared to PasRec and CF, which can be explained by the

act that the non-linear nature of DHSR and NCF can alleviate the

parsity issue of the training data. Not that TF-IDF is not used for

omparison in Fig. 7 because it only calculates the test data and

oes not depend on the training data. 

.3. Pointwise vs. pairwise (RQ2) 

As mentioned in Section 4.5 , two kinds of objective functions,

ointwise loss, and pairwise loss can be used in model learn-

ng. We explored the effectiveness of these objective functions in

ervice recommendation. In our experiments, pointwise loss func-

ions randomly selected five non-existent interactions as negative

nstances for each positive instance, while pairwise loss functions

aired exactly one sampled negative instance with a positive one.

hree kinds of loss functions other than Log Loss were selected for

omparison. 

• Squared Loss is a widely used pointwise loss function in model

parameter learning ( Hu, Koren, & Volinsky, 2008 ), which is

based on the assumption that observations are generated from

a Gaussian distribution. 
• Bayesian Personalized Ranking (BPR) ( Rendle et al., 2009 ) is a

pairwise loss function which is widely utilized in feedback rec-

ommendation to learn model parameters. It has shown a supe-

rior performance in Web service recommendation ( Liang et al.,

2016 ). 
• AUC Loss , also known as the pairwise-ranking loss and margin

ranking loss ( Grangier & Bengio, 2008 ), is a widely used pair-

wise loss function. 

Table 3 shows the effect of different loss functions on service

ecommendation performance. It can be found that, in most cases,

he performance of pointwise loss functions is better than that of

airwise loss functions. This finding can be explained by that the
ointwise method can flexibly set the sampling ratio of negative

nstances, especially in our experiments, where the interaction ma-

rix of mashups and services is extremely sparse. 

In addition, different Loss functions of the same type also ex-

ibit slight differences in recommendation performance. As can be

een from Table 3 , Log Loss performs better than Squared Loss on

ll metrics, which also proves the effectiveness of transforming im-

licit feedback based service recommendation into a binary classi-

cation problem. 

.4. Will more word embeddings be helpful? (RQ3) 

The content component of DHSR aims to extract the functional

imilarities between mashups and services by leveraging a variety

f pre-trained word embeddings. We investigated whether more

ord embeddings will be helpful in the recommendation perfor-

ance. Towards this end, we used three different word embed-

ings and made a combination of them as the input to our model,

hile keeping other conditions unchanged. We use “Loc” to de-

ote the method of only using the local Word2vec embedding,

Loc + Ref-w2v” to denote using “Loc” and a reference Word2vec

mbedding, and “Loc + Ref-w2v + Ref-Glv” to denote using a glove

eference word embedding and “Loc + Ref-w2v.”

As shown in Fig. 8 , with the increase of the number of word

mbeddings, the recommendation performance is gradually im-

roved. We attribute this encouraging result to the fact that more

ifferent kinds of word embeddings introduce more external se-

antic information, which can help DHSR explore the relations be-

ween mashups and services from more viewpoints. 

.5. Discussions and limitation analysis 

To sum up, in the experiments, we adopted five evaluation met-

ics to evaluate the recommendation performance of our proposed

HSR approach. In the first group of experiments, we showed that

HSR outperforms six state-of-the-art recommendation algorithms

cross all ranking positions. We further analyzed the impact of K ,

amely the dimension number in matrix decomposition, on the
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Fig. 7. Performance comparisons on different percentages of training data. 
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Table 3 

Evaluation results of four kinds of loss functions. 

N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40 N = 45 N = 50 

MAP 

Squared Loss 0.3421 0.3636 0.3698 0.3727 0.3747 0.3758 0.3769 0.3777 0.3785 0.3788 

Log Loss 0.3411 0.3644 0.3706 0.3739 0.3755 0.3768 0.3779 0.3787 0.3792 0.3796 

BPR 0.2944 0.3156 0.3227 0.3267 0.3288 0.3305 0.3314 0.3322 0.3327 0.3333 

AUC Loss 0.3134 0.3356 0.3434 0.3468 0.3489 0.3505 0.352 0.3530 0.3537 0.3542 

NDCG 

Squared Loss 0.4101 0.4529 0.4691 0.4787 0.4860 0.4906 0.4 94 8 0.4988 0.5028 0.5044 

Log Loss 0.4117 0.4553 0.4720 0.4821 0.4877 0.4927 0.4978 0.5013 0.5034 0.5058 

BPR 0.3613 0.4048 0.4247 0.4376 0.4458 0.4530 0.4571 0.4607 0.4635 0.4667 

AUC Loss 0.3822 0.4268 0.4473 0.4583 0.4660 0.4727 0.4791 0.4836 0.4 86 8 0.4896 

Precision 

Squared Loss 0.1674 0.1054 0.0774 0.0614 0.0517 0.04 4 4 0.0393 0.0354 0.0326 0.0297 

Log Loss 0.1720 0.1083 0.0796 0.0637 0.0528 0.0455 0.0405 0.0364 0.0329 0.0301 

BPR 0.1520 0.0985 0.0740 0.0607 0.0511 0.0447 0.0396 0.0325 0.0324 0.0298 

AUC Loss 0.1660 0.1051 0.0769 0.0617 0.0517 0.0446 0.0394 0.0355 0.0324 0.0296 

Recall 

Squared Loss 0.4980 0.6106 0.6615 0.6954 0.7219 0.7399 0.7568 0.7742 0.7904 0.7972 

Log Loss 0.5067 0.6183 0.6694 0.7081 0.7337 0.7521 0.7663 0.7790 0.7913 0.8014 

BPR 0.4577 0.5705 0.6345 0.6786 0.7102 0.7392 0.7551 0.7697 0.7817 0.7970 

AUC Loss 0.4744 0.5908 0.6557 0.6953 0.7243 0.7517 0.7773 0.7697 0.8102 0.8235 

F1 

Squared Loss 0.2295 0.1681 0.1312 0.1077 0.0925 0.0808 0.0723 0.0656 0.0608 0.0558 

Log Loss 0.2340 0.1714 0.1342 0.1111 0.0943 0.0825 0.0742 0.0672 0.0613 0.0565 

BPR 0.2091 0.1572 0.1254 0.1062 0.0916 0.0812 0.0727 0.0660 0.0604 0.0560 

AUC Loss 0.2271 0.1675 0.1303 0.1081 0.0926 0.0811 0.0724 0.0657 0.0604 0.0555 

Fig. 8. Performance comparisons on different number of word embeddings. 
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ecommendation performance, and found that K = 8 is the optimal

etting for our experiments. We also compared DHSR with other

aseline methods with respect to different percentages of training

ata and found that DHSR outperforms other methods with any

ercentage of training data. In the second group of experiments,

e compared pointwise loss functions and pairwise loss functions

nd found that pointwise loss methods have advantages over pair-

ise loss methods. Finally, we investigated whether more word
mbeddings will be helpful in the recommendation performance,

nd found that more word embeddings do improve the recommen-

ation performance since they introduce more external semantic

nformation. 

There are still some limitations in the proposed approach.

urrently we mainly test the proposed method for the non-

ncremental situation. We have not tested the case when new data

s coming. Faced with the new data, different measures will be
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taken depending on the volume of these data. If the volume of

the new data is small, we will keep the embeddings of the trained

data, and only train embeddings on the new data. The weights and

other parameters of the neural network can also be maintained be-

cause it is calculated on the basis of large amounts of data, which

can also be applied to the new small data. If the volume of the

new data is huge, the embeddings and parameters of the neural

network need to be retrained. Even in this case the original text

similarity calculation part can continue to be maintained, which

can decrease the computation time. Determining the threshold of

the volume of coming data and which measure to take depends on

the tradeoff analysis between the algorithm efficiency and the rec-

ommendation performance. We still need to investigate this point

further. 

Another limitation of our approach is that it is based on matrix

factorization, which focuses more on the global information of the

matrix and is not sensitive to the local information. In addition,

cold start and gray sheep problems are two inherent shortcom-

ings of CF. Wei, He, Chen, Zhou, and Tang (2017) integrated textual

content features into the prediction of ratings for cold start items.

Ghazanfar and Prügel-Bennett (2014) demonstrated that content-

based profile of gray-sheep users could make accurate recommen-

dations. Similarly, we enrich DHSR with textual content, which can

be used to alleviate these problems to some extent. However, tex-

tual content is only one kind of auxiliary information. There is still

much other heterogeneous information of services and mashups

that can be used, such as the domains and providers of mashups

and users, as mentioned in ( Liang et al., 2016 ). To find better solu-

tions to these two problems, it is necessary to seamlessly integrate

these different kinds of heterogeneous information into our model

in the future. 

6. Conclusion and future work 

In this paper, we proposed a deep hybrid collaborative filtering

approach for service recommendation (DHSR), which can capture

the complex invocation relations between mashups and services

in Web service recommendation by using a multilayer percep-

tron. Considering that the textual content including descriptions

and tags of services and mashups is also crucial in recommend-

ing services, DHSR further integrated collaborative filtering with

textual content within a deep neural network. We adopted three

kinds of similarity feature extractors to describe semantic similar-

ities between mashups and services and computed the similari-

ties of their textual descriptions by using a variety of pre-trained

word embeddings. Experiments conducted on a real-world dataset

demonstrated that our approach can achieve a significant improve-

ment compared with several state-of-the-art service recommenda-

tion methods. 

In the future, we plan to improve our proposed approach by

solving the limitations proposed in Section 5.5 . Firstly, we will in-

vestigate the strategy of dealing with new data. Secondly, we will

integrate more heterogeneous information of mashups and services

to improve our model. 
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