
1,∗ 2 3 4 5 6 1

1

2

3

4

5

6

n

→

1,∗ 2 3 4 5

6 1

1970

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

Shei i Fusion: Answer Generation for Shel l Program ming Tasks
via Knowledge Fusion

Neng Zhang1,*, Chao Liu2, Xin Xia3 , Christoph Treude4, Ying Zou5, David Lo6, Zibin Zheng1
1 School of Software Engineering, Sun Yat-sen University, China

2School of Big Data and Software Engineering, Chongqing University, China
3Software Engineering Application Technology Lab, Huawei, China

4School of Computing and Information Systems, University of Melbourne, Australia
5Department of Electrical and Computer Engineering, Qyeen's University, Canada

6School of lnformation Systems, Singapore Management University, Singapore
{zhangn279,zhzibin}@mail.sysu.edu.cn,liu.chao@cqu.edu.cn,xin.xia@acm.org,christoph.treude@unimelb .edu.au

ying.zou@queensu.ca,davidlo@smu.edu.sg

ABSTRACT

Shell commands are widely used for accomplishing tasks, such as
network management and file manipulation, in Unix and Linux
platforms. There are a large number of shell commands available.
For example, 50,000+ commands are documented in the Ubuntu
Manual Pages (MPs). Qyite often, programmers feel frustrated when
searching and orchestrating appropriate shell commands to accom­
plish specific tasks. To address the challenge, the shell program­
ming community calls for easy-to-use tutorials for shell commands.
However, existing tutorials (e.g., TLDR) only cover a limited num­
ber of frequently used commands for shell beginners and provide
limited support for users to search for commands by a task.

We propose an approach, i.e., ShellFusion, to automatically gen­
erate comprehensive answers (including relevant shell commands,
scripts, and explanations) for shell programming tasks. Our ap­
proach integrates knowledge mined from Q&A posts in Stack Ex­
change, Ubuntu MPs, and TLDR tutorials. For a query that describes
a shell programming task, ShellFusion recommends a list of rele­
vant shell commands. Specifically, ShellFusion retrieves the top-n
Q&A posts with questions similar to the query and detects shell
commands with options (e.g., ls -t) from the accepted answers
of the retrieved posts. Next, ShellFusion filters out irrelevant com­
mands with descriptions in MP and TLDR that share little seman­
tics with the query, and further ranks the candidate commands
based on their similarities with the query and the retrieved posts.
To help users understand how to achieve the task using a recom­
mended command, ShellFusion generates a comprehensive answer
for each command by synthesizing knowledge from Q&A posts,
MPs, and TLDR. Our evaluation of 434 shell programming tasks

shows that ShellFusion significantly outperforms Magnum (the state-
of-the-art natural language-to-Bash command approach) by at least
179.6% in terms of MRR@K and MAP@K. A user study conducted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita­
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re­
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE '22, May 21-29, 2022, Pittsburgh, FA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05 . . . $15.00
https:/ /doi.org/1 0.1 145/3510003.3510131

with 20 shell programmers further shows that ShellFusion can help
users address programming tasks more efficiently and accurately,
compared with Magnum and DeepAns (a recent answer recom­
mendation baseline).

CCS CONCEPTS

• Software and its engineering ---> Recommender systems.

KEYWORDS

Shell Programming, Answer Generation, Knowledge Fusion

ACM Reference Format:
Neng Zhang1 • ' , Chao Liu2, Xin Xia3 , Christoph Treude4, Ying Zou5 , David

Lo6, Zibin Zheng1 . 2022. Shel!Fusion: Answer Generation for Shell Pro­

gramming Tasks via Knowledge Fusion. In 44th International Conference on

Software Engineering (ICSE '22), May 21-29, 2022, Pittsburgh, FA, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3510003 .3510131

1 INTRODUCTION

In Unix and Linux platforms, shell programming is widely used
to accomplish many tasks such as network management and file
manipulation. A large number of shell commands have been devel­
oped to support shell programming. For example, Ubuntu, a main­
stream branch of Linux, has more than 50,000 commands docu­
mented in its official Manual Pages (MPs) [12] . It is extremely dif­
ficult for users to know and remember all the commands [21] .

A great amount of manual effort has been devoted to creating
easy-to-use tutorials for shell commands that are frequently used
by programmers [2, 3, 1 1 , 34, 36]. The TLDR (stands for "Too Long,
Don't Read") project [1 1] is one of the popular tutorials. Currently,
TLDR contains approximately 2,000 commands. For each command,
TLDR records a summary of the command's functionality and sev­
eral example tasks with the corresponding scripts (Section 2 . 1 .5).
Although the existing tutorials can help users learn and use shell
commands to some extent, they only cover a limited number of
frequently used commands with a few examples for shell begin­
ners, and have no effective mechanisms for users to search com­
mands by a task. Recently, several approaches are proposed to
translate natural language tasks to Bash commands [15 , 29] us­
ing a manually created dataset, NL2Bash. NL2Bash contains ap­
proximately 9,305 task-command pairs that cover 102 commonly

1970

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

n

•

•

•

•

•

©

©

n

1971

I CS E '22, May 21-29, 2022, Pitts b u rgh, PA, USA

used commands. The approaches cannot address many tasks that
require commands outside the dataset.

Q&A communities, e.g., Stack Overflow (SO) [9], have accumu­
lated millions of questions and answers about various problems
and become a knowledge repository for users [49] . There are many
Q&A posts related to shell programming in four popular Q&A com­
munities, i.e., SO, AskUbuntu (AU) [1] , Unix & Linux (UL) [13] , and
Super User (SU) [10] . Such posts can be leveraged to design auto­
matic approaches for addressing shell programming tasks without
being limited by the manually created task-command dataset.

In this paper, we propose an approach, namely ShellFusion, to
automatically generate answers for shell programming tasks by
integrating knowledge mined from Q&A posts, Ubuntu MPs, and
TLDR tutorials. We first collect shell-related questions from four
Q&A communities: AU, UL, SU, and SO, and extract knowledge of
shell commands from Ubuntu MPs and TLDR tutorials. We then
index the questions using Lucene [30] , an efficient text search en­
gine that implements the ranking function BM25. We also build
a word Inverse Document Frequency (IDF) [16] vocabulary and a
word embedding model using the questions. Given a query that de­
scribes a shell programming task, ShellFusion determines a list of
relevant shell commands to recommend. Specifically, it retrieves
the top-n questions similar to the query using Lucene search and
a word embedding model-based method. It then detects shell com­
mands with options (e.g., ls -t) from the accepted answers of the
similar questions and filters out irrelevant commands which have
descriptions in MP and TLDR that share little semantics with the
query. Next, ShellFusion ranks the candidate commands based on
their similarities with the query and the similar questions. To help
users understand how to address the query using a recommended
command, ShellFusion generates a comprehensive answer for the
command by synthesizing 1) the official MP summary, 2) the most
similar TLDR task-script pair, 3) the top-3 similar questions with
accepted scripts that use the command, and 4) the explanations
about the options of the command used in the scripts.

To evaluate ShellFusion, we create 434 shell programming tasks
from the titles of shell-related questions. We compare ShellFusion
with Magnum [15] , the state-of-the-art approach for translating
natural language tasks to Bash commands. ShellFusion significantly
outperforms Magnum by at least 1 79.6% in terms of the MRR@K
and MAP@K metrics. In addition to the widely used Q&A posts,
ShellFusion integrates two specialized information sources: the of­
ficial MPs and the unofficial TLDR tutorials. We evaluate the con­
tributions of the two information sources by testing three variants
of ShellFusion (Section 3.3). The results show that both MPs and
TLDR contribute to ShellFusion, and TLDR has more contributions
than MPs. We further conduct a user study with 20 shell program­
mers on ten programming tasks. The results show that ShellFusion
can help users address shell programming tasks more efficiently
and accurately, compared with Magnum and DeepAns [22] (an an­
swer recommendation model that uses a deep learning technique).

The main contributions of this paper are outlined below:
• We propose ShellFusion to generate comprehensive answers

for shell programming tasks by integrating knowledge mined

Neng Zhang, Chao L i u , Xin Xia, C h ristoph Treude, Ying Zou, David Lo, and Zib in Zheng

from Q&A posts, MPs, and TLDR. To the best of our knowl­
edge, ShellFusion is the first work on both command recom­
mendation and answer generation for shell programming
tasks using a knowledge fusion method.

• Our work advances software engineering research by fus­
ing and filtering knowledge from Q&A sites based on both
formal and informal software documentation.

• We propose a method for identifying shell commands with
options from Q&A posts.

• Our quantitative evaluation and user study demonstrate the
effectiveness and practicality ofShellFusion, compared with
the state-of-the-art baselines.

• We release the source code of ShellFusion and the experi­
ment dataset on GitHub [7] to help other researchers repli­
cate and extend our study.

The rest of the paper is structured as follows. Section 2 describes
the details of ShellFusion. Section 3 describes the experimental
setup for evaluating ShellFusion. Section 4 presents the experiment
results. Section 5 describes the user study. Section 6 discusses the
threats to validity of this work. Section 7 reviews the related work.
Section 8 concludes the paper and discusses future work.

2 APPROACH

Fig. 1 shows an overview of ShellFusion, consisting of two com­
ponents: CD Offline Processing that extracts shell-related questions
from Q&A communities and mines knowledge of shell commands
from Ubuntu MPs and TLDR tutorials. We index the questions us­
ing Lucene and build a word IDF vocabulary and a word embed­
ding model from the questions; and @ Online Answer Generation
that generates answers for a query describing a shell programming
task. We retrieve the top-n questions similar to the query and syn­
thesize multi-source knowledge of candidate shell commands de­
tected from the accepted answers of the similar questions.

2.1 Offline Processing

2. 1. 1 Shell-Related Question Collection. There are four main Q&A
communities in Stack Exchange that contain posts related to shell
programming, i.e., AU, UL, SU, and SO. We download the official
data dumps of the communities released on March 1, 2021 [8] . The
Q&A posts of each community are stored in an XML file, Posts.xml.
The questions in AU and UL are all relevant to shell programming.
We extract 371 ,801 and 198,939 shell-related questions from AU
and UL, respectively. The questions in SU and SO are not all rel­
evant to shell programming. We manually examine the technical
tags assigned to the questions of both communities and determine
252 shell-related tags that contain 'shell', 'bash', 'sh', 'unix', 'linux',
or 'ubuntu'. Using the tags, we collect 87,587 and 539, 171 shell­
related questions from SU and SO, respectively.

A question may have several answers provided by different de­
velopers worldwide. One of the answers can be accepted by the
asker of the question. As confirmed by the asker, the shell com­
mands mentioned in the accepted answer could be used to address
the question. ShellFusion extracts candidate shell commands for a
query from the accepted answers of questions similar to the query.
Table 1 lists the statistics of our collected shell-related questions.
In total, there are 537, 129 questions with accepted answers.

1971

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

Q&A
Communities

Shell-Related
Question
Collection

Shell-Related
Questions

Building A Word IDF Vocabulary for
Similarity Calculation

Word IDF
Vocabulary

Word
Embedding

Model

Query
Similar

Question
Retrieval

Top-k
Similar

Questions

Shell Command
Detection &

Filtering

Candidate
Commands

Command
Ranking

Ranked
Commands

Answer
Generation for
Each Command

MP Summary

Top-3 Similar Questions
with Accepted Scripts

The Most Similar TLDR
Task-Script Pair

Generated Answer for Each Command

Offline Processing

MP
Parsing

MP Knowledge
of Shell

Commands
TLDR Knowledge

of Shell
Commands

TLDR
Parsing

Shell Programmer

Online Answer Generation TLDR
Tutorials

Ubuntu
Manual Pages

(MPs)

2

1

1.1

2.1

1.3

1.4

1.5

2.2

2.3

2.4

Building Lucene Index for Question
Retrieval

Lucene
Index of

Questions

1.2

Explanations about Options

Building A Word Embedding Model
for Similarity Calculation

〈pre〉

•

•

•

1972

S h e i i F us ion: Answer Generation for She l l P rogra m m i n g Tasks via Knowledge Fus ion

-

Q&A
Communities

Shell Programmer

M P Summary

The Most Similar TLDR

Task-Sc ript Pair

Top-3 Similar Questions

with Accepted Scripts

Explanations about Options

0 Online Answer Generation

Ranked

Commands

ICSE '22, May 21 -29, 2022, Pitts b u rgh, PA, USA

(D Offline Processing

•

Ubuntu

.----'-----+------, Manual Pages

(MPs)

TLDR

Tutorials

Figure 1: Approach overview of ShellFusion

Table 1: Statistics of shell-related questions

Q&A community

Ask Ubuntu (AU)
Unix & Linux (UL)
Stack Overflow (SO)
Super User (SU)
Total

Shell-related questions

371,801
198,939
539,171
87,587
1,197,498

Shell-related questions

with accepted answers

122,729
95 ,343
281,134
37,923
537,129

2. 1.2 Building A Word Embedding Model and A Word IDF Vocabu­

lary for Similarity Calculation. Using the shell-related questions,
we build a word IDF vocabulary and a word embedding model,
which are subsequently used to calculate the similarity between
a question (or a shell command or a TLDR task) and a query. The
word embedding model is the basic model for calculating word sim­
ilarities, while the word IDF vocabulary is used to weight the im­
portance of words. The IDF of a word is the inverse of the number
of questions that contain the word. The more questions in which
a word appears, the lower the word's IDF is, meaning that the less
likely the word carries important information.

We build a text corpus by processing the questions using three
steps: 1) removing long code snippets enclosed in HTML tag (pre) ;
2) removing stopwords (e.g., 'a' and 'the') based on the stopword
list in the NLTK toolkit [17]; and 3) reducing each word to its root
form (aka. stemming) by applying the Porter stemmer in NLTK.
We use the corpus to train a word embedding model by applying
the word2vec [32] module (with default parameter settings) in Gen­
sim [5] . We compute the IDF value of each word in the corpus.

2. 1.3 Building Lucene Index for Question Retrieval. We create a
document for each shell-related question by collecting the title and
tags. We exclude the body of a question as when examining a ques­
tion returned for a query, users often judge its relevance based on
the title and tags before looking into the long text in the body. We
index the question documents using Lucene. The index is used to
improve the efficiency of retrieving similar questions for a query.

1972

2. 1.4 MP Parsing. Ubuntu is a widely used open-source Linux sys­
tem. To generate answers for shell programming tasks in Ubuntu,
we need to acquire knowledge about shell commands available in
Ubuntu, which are documented in the Ubuntu MPs [12] . We collect
the MPs ofUbuntu 20.04 LTS (Focal Fossa) released on February 4,
2021 . The MPs are grouped into nine sections, numbered from 1
to 91 . In the current ShellFusion, we focus on the shell commands
and system administration commands in the sections 1 and 8, as
they are more likely to be used by programmers. Note that sys­
tem administration commands are considered as a special kind of
shell commands. Each MP is a structured HTML page describing a
command, e.g., the summary, synopsis, and options. The following
shows a part of the information of command ls.

• Sununary: list directory contents
• Synopsis: ls [OPTION]. .. [FILE] . . .
• Options:

-1 : use a long listing format
-h, --human-readable: with - 1 and -s, print sizes like
1K 234M 2G etc.
-t: sort by modification time, newest first

We parse the MPs using the lxml module in Python and obtain
the summary and options of each command. In total, we obtain
50,841 commands, including 44,423 and 6,418 commands from the
sections 1 and 8, respectively.

2. 1.5 TLDR Parsing. Ubuntu MPs are generally too lengthy to read
and rarely provide examples to demonstrate how to use a com­
mand. It is often difficult for users to find appropriate commands
with options for a task from the large number of commands and
options described in the MPs. Existing work has been devoted to
creating easy-to-use tutorials for frequently used commands [2, 3,
1 1 , 34, 40]. The TLDR project [1 1] hosted on GitHub is one of the
most popular tutorials. We download the TLDR repository from

1 https:/ /help.ubuntu.com/ conununity/man

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

•

•

N

N
T

Q T
Q

sim(T → Q) =

∑
w ∈T sim(w,Q) × id f (w)

∑
w ∈T id f (w)

sim(w,Q) sim(w,w ′),∀w ′ ∈ Q
sim(w,w ′)

w w ′ sim(Q → T)
T Q

T Q

sim(T ,Q) =
2 × sim(T → Q) × sim(Q → T)

sim(T → Q) + sim(Q → T)

N
n

n
N

N

n

 $ ls -lh /bin/ls /bin/cat
 -rwxr-xr-x 1 root root 25K May 24 2008 /bin/cat
 -rwxr-xr-x 1 root root 88K May 24 2008 /bin/ls
 $ date > test.txt
 $ ulimit -d 10000 -m 10000 -v 10000
 $ /bin/ls date.txt
 /bin/ls: error while loading shared libraries: libc.so.6: failed
to map segment from shared object: Cannot allocate
memory
 $ /bin/cat date.txt
 Thu Mar 26 11:51:16 PDT 2009
 $

Command
and option
detection

NOTE: ulimit is the actual command
for limiting the resource usage of a
process, while the other commands

are just used for completing the
illustration.

Command Options
ls -l, -h

cat
date

ulimit -d, -m, -v

•

〈code〉
〈pre〉

|

•

i Ci

Ci

Ci Ci

t
t Ci

t
t

Ci

Ci
Ci

n

1973

I CS E '22, May 2 1 -29, 2022, Pittsburgh, PA, USA

GitHub. The commands related to Linux are contained in two fold­
ers: /pages/common that contains the commands common to multi­
ple operating systems, e.g., Linux and Windows; and lpagesllinux
that contains the commands specific to Linux. For each command,
TLDR maintains a summary and several representative task-script
pairs in a MARKDOWN file. The summary and a task-script pair
of command ls are as follows.

• Summary: list directory contents
• Task-Script Pairs:

Task 1: Long format list with size displayed using human
readable units (KB, MB, GB)
Script 1: ls -lh

We parse the MARKDOWN files and obtain the summaries and
example task-script pairs of 1,797 commands, including 1,264 and
533 commands from /pages/common and lpagesllinux, respectively.

2.2 Online Answer Generation

2.2. 1 Similar Question Retrieval. Given a query describing a shell
programming task, we first preprocess the que1y using stopword
removal and stemming. Then, we need to retrieve a list of shell­
related questions similar to the query. In Section 2 . 1 .2, we build a
word IDF vocabulary and a word embedding model for measur­
ing the similarity between a question and the query. However,
it is time-consuming to calculate the similarities of 537, 129 shell­
related questions using the word embedding model due to the re­
quired matrix representations of the questions [26]. To expediate
the retrieval of similar questions, we use a two-phase method by
combining Lucene and a language model-basedmethod. In the first
phase, we use the Lucene search engine to retrieve the top N ques­
tions similar to the query by leveraging the Lucene index built for
all questions. In the second phase, for each of the N questions, we
calculate an asymmetric IDF-weighted similarity of the question T
to the que1y Q based on the words of the title and tags of T and
the words of Q:

. (T Q) :Z::wET sim(w, Q) X idf(w)
szm � = ����������

:Z..: wET idf(w)
(1)

where sim(w, Q) is the maximum value of sim(w, w'), Vw' E Q,
and sim(w, w') is the cosine similarity of the word embedding vec­
tors of w and w'. Another asymmetric similarity sim(Q � T) is
calculated by swapping T and Q in Eq. (1). Finally, we calculate
the similarity between T and Q as the harmonic mean of the two
asymmetric similarities:

sim(T Q) =
2 x sim(T � Q) x sim(Q � T)

(2) '
sim(T � Q) + sim(Q � T)

After calculating the similarities of the N questions, we obtain
the top-n similar questions for the query. In ShellFusion, we set
n = 50 by default as too many questions introduce noise to the
answer generation process, and set N = 1,000, so that the top-50
semantically similar questions can be covered by the N questions.

2.2.2 Shell Command Detection & Filtering. It is likely that the
shell commands used in the accepted answer of a similar question
are relevant to the query. A set of candidate commands can be ob­
tained by detecting commands from the accepted answers of the
top-n similar questions. For an accepted answer, we identify com­
mands with options as follows.

Neng Zhang, Chao L iu , X in Xia, Ch ristoph Treude, Ying Zou, David Lo, and Zibin Zheng

$ Is -lh /bin/Is /bin/cat
-rwxr-xr-x 1 root root 25K May 24 2008 /bin/cat
-rwxr-xr-x 1 root root 88K May 24 2008 /bin/Is
$ date > test.txt
$ ulimit -d 10000 -m 10000 -v 10000
$ /bin/Is date. txt
/bin/Is: error while loading shared libraries: l ibc.so.6: failed

to map segment from shared object: Cannot al locate
memory
$ /bin/cat date.txt
Thu Mar 26 11:51:16 POT2009
$

Command Command Options

and option Is -1, -h

detection cat
date
ulimit -d, -m, -v

NOTE: ulimit is the actual command
for limiting the resource usage of a
process, while the other commands

are just used for completing the
illustration.

Figure 2: Commands and options detected from a code snip­

pet that shows how to limit the memory usage of a process

• Command detection. We build a dictionary that stores all
the commands extracted from Ubuntu MPs. We collect both
short code snippets enclosed in HTML tag (code) and long
code snippets enclosed in HTML tag (pre) in the accepted
answer. By manually examining the code snippets (i.e., shell
scripts) in the accepted answers of 100 sampled questions,
we find that the commands in shell scripts often appear at
the beginning of a script line or immediately behind six spe­
cial characters: $, /, (, 1. {, and =, e.g., '$ �· and '/bin/�' shown
in Fig. 2. For each script, we replace the special characters
with a whites pace and then split the script into a set of to­
kens by whites paces. The tokens that match any command
in the dictionary are marked as candidate commands. Fig. 2
shows four commands detected from a code snippet that il­
lustrates how to limit the memory usage of a process2 .

• Option detection. We further detect the options of each
candidate command used in the scripts. We treat each script
line as a token sequence in which some tokens correspond
to candidate commands. For the i-th command token, C;, its
associated options should exist in the token subsequence be­
tween C; and the next command token or the end of the se­
quence. If a token in the subsequence matches any option ex­
tracted from C; 's MP, we mark it as an option of C;. In prac­
tice, multiple options of a command can be compacted. In
Fig. 2, the options -1 and -h of command ls are compacted
as -lh. For a token, t, which matches the regular expression
- [a-zA-Z] { 2 , }, if t does not match any option ofC;, we di­
vide t into multiple tokens that start with '-' and contain
every single letter in t, and then check whether each of the
tokens matches any option of C;. We also find that some
options of a command may not exist in its MP. For exam­
ple, the options -d, -m, and -v of command ulimi t shown
in Fig. 2 are not included in the MP3 . Therefore, we mark a
token that does not match any option of C; but matches the
regular expression - [a-zA-Z] as a candidate option of C;.

By collecting the commands with options detected from the ac­
cepted answers of the top-n similar questions, we obtain the entire
set of candidate commands with associated options.

We observe that some detected candidate commands are irrele­
vant to the query. In Fig. 2, ul imi t is the actual command for lim­
iting the memory usage of a process, while the other commands,

2https://superuser.com/questions/134269
3http:/ /manpages.ubuntu.com/manpages/focal!en/manl/ulimit.lposix.html

1973

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

C

Cmp

C Ct ldr
C Q

Cmp Ct ldr
C Q

sim(C,Q) = α × sim(Cmp ,Q) + (1 − α) × sim(Ct ldr ,Q)

α ∈ [0, 1]
C Ct ldr Cmp

α

k

k

C

T (C,Q)

likelihood(C → Q) =min(

∑
T ∈T (C ,Q) sim(T ,Q)

n
× loд2n, 1.0)

sim(T ,Q) T
Q n

T (C,Q)

C

C
sim(C,Q)

likelihood(C → Q)

•

•

•

•

k
k

k

•

•

•

1974

Shei iFus ion: Answer Generation for She l l Progra m m i ng Tasks via Knowledge Fusion

e.g., ls, are used for completing the illustration. We filter out the ir­
relevant commands by measuring their similarities with the query.
For a command, C, we process its summary and the descriptions of
its options in MP using stopword removal and stemming, resulting
in a bag of words, Cmp · Similarly, we process the summary and ex­
ample tasks of C in TLDR, resulting in a bag of words, Ct ldr · We
calculate two partial similarities between C and the query Q using
Eq. (2) based on Cmp and Ctldr • respectively. Finally, we calculate
the similarity between C and Q as:

sim(C, Q) = a x sim(Cmp. Q) + (1 - a) x sim(Ctldr o Q) (3)

where a E [0, 1] is a coefficient to balance the importance of the
MP and TLDR descriptions of C. We distinguish Ctldr and Cmp for
similarity measurement since a command in TLDR means that it is
frequently used and could be considered for recommendation with
priority. In this work, we set a = 0.5 to assign equal weights to the
MP and TLDR descriptions.

We refine the candidate commands by retaining the top-k com­
mands with the maximum similarities.

2.2.3 Command Ranking. Intuitively, a command that is more fre­
quently used in the accepted answers of similar questions is more
likely to address the query. If a command can implement a ques­
tion that is more similar to a query, it is more likely to address
the query. We re-rank the top-k candidate commands by consider­
ing both the number of accepted answers that use the commands
and the similarities of questions. For a command, C, we obtain the
set of similar questions whose accepted answers mention the com­
mand, denoted as T(C, Q). Then, we measure the likelihood that
the command could be used to address the query as

L,TET(C Q) sim(T, Q)
likelihood(C --> Q) = min(' x logzn, 1 .0) (4)

n

where sim(T, Q) is the similarity between a question, T, and the
query Q, which is calculated using Eq. (2); and n is the number
of questions in T(C, Q). The equation has two parts: the first part
calculates the average of the similarities of the questions whose
accepted answers contain C; and the second part boosts the simi­
larity based on the number of such questions. We add a logarithm
transformation to avoid excessive boosting. The likelihood should
not exceed 1 for calculating the recommendation score below.

We calculate the final recommendation score of C as the har­
monic mean of its similarity with the query, sim(C, Q), and its like­
lihood of achieving the query, likelihood(C --> Q). A refined list
of the candidate commands is produced by ranking them in a de­
scending order according to the recommendation scores.

2.2.4 Answer Generation for Commands. To help users understand
the recommended commands and quickly locate useful commands
and scripts for the query, we generate a comprehensive answer for
each candidate command by synthesizing the following aspects:

• MP summary. We present the official summary of the com­
mand in its MP to help users quickly check the command's
functionality.

• The most similarTLDR task-script pair. If the command
has a tutorial in TLDR, we calculate the similarity between
each example task of the command and the query using

ICSE '22, May 2 1 -29, 2022, Pittsb u rgh, PA, USA

Eq. (2). We then present the most similar task with the corre­
sponding script, so that users can quickly find a useful script
if the task matches the query.

• Top-3 similar questions with accepted scripts. We list
the titles of the top-3 similar questions whose accepted an­
swers contain the command. For each question, we also list
the scripts that use the command in the accepted answer.
Users could find useful scripts by comparing the question
titles with the query. We only present the top-3 questions
with accepted scripts is to prevent information overload.

• Explanations about options. There can be some options
of the command used in the associated scripts. To help users
understand the scripts, we present the official MP descrip­
tions of the options. Since the command designer may miss
options (Section 2.2.2), for the options without MP descrip­
tions, we present the sentences that contain the options in
the accepted answers of the top-3 similar questions.

3 EXPERIMENTAL SETUP

This section introduces the experimental setup for evaluating Shell­
Fusion. Our experimental environment is a server with an Intel-i7
CPU, an Nvidia Geforce GTXl 060 GPU, 64G RAM, and Win 10 OS.

3.1 Prototype Implementation

As described in Sections 2 . 1 . 1 , 2 .1 .4, and 2.1 .5 , we collect 537, 129
shell-related questions with accepted answers from four Q&A com­
munities, 50,841 shell commands from the MPs of Ubuntu 20.04
LTS, and 1,797 Linux commands from the TLDR tutorials. We per­
form the offline process ofShellFusion on the dataset (Section 2. 1).

In the online process of ShellFusion, there is a key parameter,
k, which is the number of candidate commands used to generate
answers. To determine the proper setting of k, we conduct a pilot
study to measure the performance of ShellFusion on 50 experimen­
tal queries using different k values (Section 4. 1).

3.2 Qyery Selection

Similar to prior work [26, 35, 48, 50, 5 1] , we create a number of ex­
perimental queries from shell-related questions without accepted
answers that are not included in the question repository used for
implementing ShellFusion. To ensure the quality and popularity
of queries, we collect 14,383 questions according to the following
criteria: the score should be at least 10; and the viewcount should
be at least 1,000. We then randomly select 500 questions from the
collected questions. The lead author of this paper and a PhD stu­
dent (who is not a co-author of this paper) manually examine the
titles of the 500 questions to filter out questions that do not aim to
search shell commands for programming tasks. They first indepen­
dently label the questions to be removed. Typical examples of the
questions being removed are given below:

• A question seeks for explanations about commands or other
resources, e.g., What is the meaning of "chmod 666"?

1974

• A question seeks for comparison between commands or other
resources, e.g., Difference between cp -r and cp -a.

• A question describes an error, e.g., "ping: unknown host google.com"
but IPs works fine.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

•

•

•

•

•

K

K

k

k
k

k

k
k

k

k ∈

k

1975

ICSE '22, May 21 -29, 2022, Pitts b u rgh, PA, USA

We measure the inter-rater agreement between the two labelers
using Fleiss Kappa [20] . The Kappa value is 0.87, indicating an al­
most perfect agreement. After discussing the disagreements, both
labelers reach a common decision on the removal of 29 questions.
Furthermore, we find that there are questions describing analogous
tasks. For example, both How to install Coogle Chrome and How do
I install iTunes on Ubuntu? ask for the installation of applications.
To better evaluate the performance ofShellFusion on various tasks,
only one of the analogous questions should be retained. Both la­
belers further independently examine the remaining 471 questions
and label the analogous questions to be removed. The Kappa value
is 0.82, indicating an almost perfect agreement. They discuss the
disagreements and reach a consensus on the removal of 37 ques­
tions. As a result, we obtain 434 queries by collecting the titles of
the final 434 questions.

3.3 Baseline Approaches

ShellFusion recommends shell commands for a query and gener­
ates a detailed answer for each command by leveraging Q&A posts,
MPs, and TLDR. Q&A posts are used to extract candidate com­
mands, while MPs and TLDR are used to filter out irrelevant com­
mands and generate comprehensive answers. After extensive lit­
erature search, there is no existing work that exploits Q&A posts
to recommend shell commands. However, several approaches, e.g.,
Magnum and Tellina, are proposed to translate natural language
to Bash commands [15 , 29]. According to the NLC2CMD competi­
tion held at NeuriPS 2020, Magnum is the state-of-the-art approach.
Moreover, some work generates or recommends answers for pro­
gramming tasks by exploiting Q&A posts [22, 48] . DeepAns [22]
is one of the state-of-the-art approaches. We compare ShellFusion
with Magnum and DeepAns, which are briefly described below:

• Magnum [15] translates a natural language task to the cor­
responding Bash command. The translation model is an en­
semble of five separately trained transformer [43] models
consisting of six layers with Beam Search [41] . Magnum is
trained using the NL2Bash dataset [29] that contains 9,305
task-command pairs. We implement Magnum using its source
code and pre-trained model released on GitHub [6] .

• DeepAns [22] recommends the most relevant answer for a
query from the answers of similar questions in Q&A com­
munities, e.g., AU and SO. It first boosts the query by ap­
pending a clarification question generated using a sequence­
to-sequence model. The model is trained based on the clar­
ification questions asked in the comments of Q&A posts.
DeepAns then retrieves the top-S similar questions and ob­
tains the answers of the similar questions as candidate an­
swers. Finally, DeepAns sorts the answers by the matching
scores calculated using a neural network model. The neural
network model is trained based on four kinds of automati­
cally labeled Q&A pairs. We implement DeepAns using its
source code released on GitHub [4] .

We evaluate two aspects of ShellFusion: the recommended shell
commands and the generated answers. For the evaluation of shell
command recommendation, we use Magnum as a baseline but ex­
clude DeepAns for the following reasons: DeepAns is a general ap­
proach proposed for recommending relevant answers for queries

1975

Neng Zhang, Chao L i u , Xin Xia, C h ristoph Treude, Ying Zou, David Lo, and Zib in Zheng

from the existing answers of questions in Q&A communities. Deep­
Ans can apply to shell programming tasks but it does not identifY
shell commands relevant to the queries from the recommended an­
swers. For the evaluation of answer generation, we conduct a user
study by comparing ShellFusion with both Magnum and DeepAns.

As described previously, in ShellFusion, Q&A posts are the ba­
sic information source used to obtain candidate shell commands
for queries, and the other two information sources, i.e., MPs and
TLDR, are used to filter out irrelevant commands and producing
comprehensive answers. To evaluate the contributions ofMPs and
TLDR, we implement three variants of ShellFusion as follows.

• ShellFusion-QA uses Q&A posts only. Candidate commands
are ranked by the likelihood scores computed using Eq. (4).

• ShellFusion-QA+MPs uses Q&A posts and MPs. The MP
knowledge of shell commands is used to filter out irrelevant
candidate commands.

• ShellFusion-QA+ TLDR uses Q&A posts and TLDR. The
TLDR knowledge of shell commands is used to filter out ir­
relevant candidate commands.

3.4 Evaluation Metrics

We evaluate the shell commands recommended by ShellFusion, Mag­
num, and the variants of ShellFusion using two widely used met­
rics: Mean Reciprocal Rank at K (MRR@K) [38] and Mean Average
Precision at K (MAP@K) [26]. For a query, Reciprocal Rank@K
(RR@K) refers to the multiplicative inverse of the rank of the first
relevant command in the top-K recommendation list. MRR@K av­
erages the RR@K values for a set of queries. For a query, Average
Precision@K (AP@K) calculates the average of the precision at the
occurrence of every relevant command in the top-K recommenda­
tion list. MAP@K averages the AP@K values for a set of queries.

4 EXPERIMENT RESULTS

4.1 RQl: What is the best setting of parameter
k in ShellFusion?

Motivation. As shown in Fig. 2, ShellFusion may detect shell com­
mands irrelevant to a query from the code snippets in the accepted
answers of similar questions. We filter out the noises by retain­
ing the top-k commands that have the maximum similarities with
the query. The setting of k can affect the quality of recommended
commands. A large k (e.g., 20) may not filter out some irrelevant
commands which can be included or even ranked highly in the rec­
ommendation list. A small k (e.g., 1) may leave out relevant com­
mands. We need to determine the best setting of k to ensure a good
performance of ShellFusion.

Approach. We perform a sensitivity analysis of k by conducting
a pilot study with 50 queries randomly selected from the experi­
mental queries. We run ShellFusion on the queries with different
settings of k E {1 , 3, 5, 10, 15, 20}. For each query, we collect the
answers generated using different k values. We then recruit two
PhD students who are familiar with Ubuntu and have more than
five years of experience in shell programming to evaluate the rele­
vance of recommended commands in the answers. The relevance of
a command indicates to what extent the command could be used to

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

k

K

k
k k

k k

k
k

k
k

k

< < <

1976

Shel l Fusion: Answer Generation for She l l Program m i n g Tasks Knowledge Fusion

Table 2: Performance of ShellFusion with different k values

0.560 0.668 0.398 0.425
10 0.560 0.670 0.278 0.432
15 0.560 0.657 0.666 0.278 0.431
20 0.560 0.657 0.666 0.278 0.43J

address the corresponding query. Both PhD students first indepen­
dently evaluate the relevance of each recommended command by
five 0-4, where 0, 1, 2, 3, and 4mean irrelevant'. ' ir­
relevant', ·neutral ', 'relevant', and 'strongly relevant', respectively.
If the knowledge in an answer is insufficient to judge
the relevance of the recommended command in the answer, they
can search for the command on the web. In total, both students in­
dependently evaluate 302 commands for the 50 The Fleiss
Kappa value is 0.78, which indicates a substantial agreement. The
students reach a consensus by discussing the u.co·"o"'""wcw.�.

Based on the relevance of recommended commands, we mea­
sure the average performance of ShellFusion. For every specific
MRR@K or MAP@K metric. we compute the metric value of the
top-K commands recommended for each query. Then, we compute
the average of the metric values of the 50 queries.

Results. ShellFusion achieves better performance with the

setting of k 3, 5, or 10. Table 2 presents the performance of
ShellFusion achieved using different k values. As k increases from
1 to 20, in terms of five specific metrics except MRR@5, the per­
formance first increases until reaching a peak; thereafter it 1) be­
comes stable or 2) degrades slightly and then becomes stable. Shell­
Fusion achieves the optimal performance on the maximum number
of (i.e., four) metrics using k = 3 or 10. Specifically, when k = 3, the
MRR@l , MRR@3 , MRR@5, and MAP@1 values are optimal; when
k = 10, the MRR@l , MRR@5, MAP@l, and MAP@5 values are op­
timal. Moreover, when k = 5, the MRR@l , MAP@l , and MAP@3
values are optimal, and the values of the other three metrics are
very close to the optimal ones achieved using k 3 or 10. From the

results, users can set k = 3, 5, or 10 based on their preferences

with respect to the four metrics: MRR@3, MRR@5, MAP@3,

and MAP@5. In this work, we prefer MAP@K to MRR@K as
Mi\P@K considers both scores and ranking of the relevant com­
mands. We are also more interested in the top-3 recommended
commands. Therefore, we set k = 5 for the experiments.

4.2 RQ2: How effective is ShellFusion in shell
command recommendation?

Motivation. ShellFusion aims to recommend relevant shell com­
mands with comprehensive knowledge for tasks. It
is necessary to evaluate the effectiveness of ShellFusion in shell
command recommendation. ShellFusion integrates the knowledge
of shell commands mined from Q&A posts, MPs, and TLDR. Q&A
posts are used to extract candidate shell commands, while both
MPs and TLDR are used to filter out irrelevant commands and gen­
erate answers for commands. We need to validate
the contributions of !v!Ps and TLDR to ShellFusion.

ICSE '22, May 21 -29, 2022. P i tls b u rgh, PA, USA

Table 3: Performance of ShellFusion and four baselines

Approach. We implement Magnum and three variants of ShellFu­
sion, i.e., ShellFusion-QA+MPs, and ShellFusion­
QA+ TLDR, as baselines (Section 3 .3). We perform SheliFusion and
the baselines on the 434 experimental queries. For each query, we
collect the answers produced by the five approaches. The two PhD
students involved in RQl further evaluate the relevance of recom­
mended commands in the answers. Note that the answer (i.e .. a
command template) produced for a quety by Magnum
multiple commands, as shown in Fig. 3. We ask the students to eval­
uate every command in the command templates produced by
num. Similarly, first independently evaluate the relevance of
each command five 0-4. In total, both students indepen-
dently evaluate 5,509 commands, and the Fleiss is 0.83,
indicating an almost perfect agreement. After discussing the dis­
agreements, the students achieve a consensus.

We measure the average performance of the five on
all experimental For Magnum, we measure its best perfor­
mance of the command template produced for a query based on
the optimal command list ranked in descending order by the rel­
evance. In terms of every specific MRR@K and MAP@K metric,
we also examine the statistical significance of the differences be­
tween the ofShellFusion and the baselines the
Wilcoxon �'"'""''''-'''"

Results. SheiiFusion has demonstrated the effectiveness in

shell command recommendation. Table 3 presents the

1976

rnance ofShellFusion and four baselines, and the results
of Shell Fusion over the baselines. ShellFusion achieves the opti­
mal performance on MRR@l , !vlAP@l , l'v1AP@3, and MAP@5. 1he
MRR@3 and MRR@S values of ShellFusion are very close to the
optimal ones achieved by ShellFusion-QA+TLDR. ShellFusion sig­
nificantly outperforms Magnum with an improvement of at least
2 1 7.0% on MRR@K and at least 179.6% on l'v1AP@K. The poor per­
formance of Magnum is mainly due to the training dataset, NL2Bash.
which covers only 102 commands. !Vlagmun cannot deal with many
tasks that require commands outside the dataset.

ShellFusion-QA+MPs improves ShellFusion-QA slightly on five
metrics except MAP@ 1. 1he worse MAP@ 1 ofShellFusion-QA+MPs
may be caused by the misleading similarities between some com­
mands and calculated based on the MP descriptions of the
commands and their options. ShdlFusion-QA+ TLDR achieves much
better performance than ShellFusion-QA on all rnetrics. The re­

sults indicate that both MPs and TLDR contribute to ShellFu­

sion, and TLDR has more contributions than MPs. Through
our analysis, the results can be explained by the fact that unlike
the official MPs provided by command designers, the unofllcial
TLDR contains knowledge about the usage of commands,
which is more useful for users. Although MPs have limited contri­
butions to better commands, MPs are necessary to

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

N

N
n

The Top-1 Answer Generated by ShellFusion: =========
Command: cut
MP Summary: remove sections from each line of files
The Most Similar TLDR Task: Cut out the first sixteen characters of each line of the given files
The Most Similar TLDR Script: cut -c {{1-16}} {{file}}

Top-3 Similar Questions with the Accepted Scripts
Question Title: Extract the first character after the first number
Accepted Script: s="1478456=Good bye 1 2"
 echo ${s//[[:digit:]]/} | cut -c1
Question Title: Get string after character
Accepted Script: cut -d "=" -f2 <<< "$your_str"
Question Title: Extract text between two strings but only the first occurrence using sed?
Accepted Script: echo "<tag>Hello world </tag> blah blah blah <tag> Good night ls -ltrh
cptrade* </tag>" | cut -d'>' -f2 | cut -d'<' -f1

Explanations about Options
-c: select only these characters
-d: use DELIM instead of TAB for field delimiter

The Command Template Produced by Magnum: =========
echo Regex | cut -d Regex -f Number

The Most Relevant Answer Recommended by DeepAns: =========
Using awk:
awk '{for (i=1;i<=NF;++i) {if($i~/^[v]/){print $i}}}' yourfile.txt
This is:
Iterating the file record by record (because that's what awk does)
Iterating each field delimited by the default : for (i=1;i<=NF;++i)
Testing to see if the field starts with a "v": if($i~/^[v]/)
If so it prints the field value print $i
I'm certain sed could make quick work of this too.

1977

ICSE '22, May 21 -29, 2022, Pitts b u rgh, PA, USA

Table 4: Time cost of ShellFusion, Magnum, and DeepAns

Offline processing time
Shel!Fusion 3.2 hours

Magnum

DeepAns 12.0 hours

Online processing time
0.4 seconds per query

0.01 seconds per query

3.37 seconds per query

help users understand the generated answers by offering official
explanations about the recommended commands and options, as
confirmed by the participants of our user study (Section 5).

4.3 RQ3: How efficient is ShellFusion?

Motivation. As shown in Fig. 1, ShellFusion has five offline steps,
e.g., word embedding model building, and MP and TLDR parsing.
Although the steps require substantial time, they do not affect the
efficiency of online answer generation. To accelerate the online
process, we conduct two steps offline: 1) transforming the titles and
tags of all questions in the repository into matrix representation
based on the word embedding model; and 2) detecting commands
with options from the code snippets in the accepted answers of all
questions. Using the results, ShellFusion can efficiently calculate
semantic similarities between a query and the N = 1,000 questions
reduced by Lucene, and quickly obtain candidate commands from
the top-50 similar questions.

During the online answer generation for a query, ShellFusion
needs to filter out irrelevant candidate commands by calculating
their similarities with the query, rank the refined candidate com­
mands, and generate a detailed answer for each command by syn­
thesizing knowledge from multiple sources. If ShellFusion cannot
run with a reasonable runtime, users may not be willing to use it in
practice. We need to validate the online efficiency of ShellFusion.

Approach. We record the time spent on the offline and online
steps of ShellFusion, DeepAns, and Magnum.

Results. ShellFusion can rapidly respond to users after they

submit a shell programming task. Table 4 presents the offline
and online time cost of three approaches. We do not report the
offline time of Magnum as we directly use its pre-trained model.
The offline process ofShellFusion takes 3.2 hours, which should be
acceptable in practice. In the online process, ShellFusion takes only
0.4 seconds to generate answers for a query. DeepAns has higher
offline and online time cost than ShellFusion. Magnum can answer
a query within 0.01 seconds, which is much faster than ShellFusion,
however, the effectiveness of Magnum is poor (Table 3).

The efficiency of ShellFusion largely depends on the two-phase
method used for similar question retrieval. After reducing the large
repository to a set of N questions using the Lucene search engine,
the top-n similar questions can be efficiently retrieved using the
word embedding model-based method.

5 USER STUDY

In this section, we conduct a user study to validate the practical
value of ShellFusion by checking whether the generated answers
can help users find correct shell commands and scripts for pro­
gramming tasks more efficiently and accurately.

1977

Neng Zhang, Chao Liu, Xin Xia, Ch ristoph Treude, Ying Zou, David Lo, and Zibin Zheng

The Top-1 Answer Generated by SheiiFusion: =========
Command: cut
M P Summary: remove sections from each line of files
The Most Similar TLDR Task: Cut out the first sixteen characters of each line of the given files
The Most Similar TLDR Script: cut -c {{1-16}} {{file}}

Top-3 Similar Questions with the Accepted Scripts ###

Question Title: Extract the first character after the first number
Accepted Script: s="1478456=Good bye 1 2"

echo ${s//ll:d igit: 11/} I cut -cl
Question Title: Get string after character
Accepted Script: cut -d "=" -f2 <« "$your_str"
Question Title: Extract text between two strings but only the first occurrence using sed?
Accepted Script: echo "<tag>Hello world </tag> blah blah blah <tag> Good night Is -ltrh
cptrade* </tag>" I cut -d'>' -f2 I cut -d'<' -fl

Explanations about Options ###

-c: select only these characters
-d: use DE LIM instead ofTABforfield del imiter

The Command Template Produced by Magn um: =========
echo Regex I cut -d Regex -f Number

The Most Relevant Answer Recommended by DeepAns: =========
Using awk:
awk '{for (i=l;i<=NF;++i) {if($ i"'/"[v]/){print $i}}}' yourfile .txt
This is:
Iterating the file record by record (because that's what awk does)
Iterating each field delimited by the default : for (i=l;i<=N F;++i)
Testing to see ifthe field starts with a "v": if($i"'/"[v]/)
If so it prints the field value print $i
I 'm certa in sed could make quick work ofthis too.

Figure 3: The answers produced by ShellFusion, Magnum,

and DeepAns for the query Q7 listed in Table 5.

5.1 Study Design

We randomly select ten experimental queries. The two PhD stu­
dents involved in RQ1 and RQ2 determine the ground-truth com­
mands and scripts for the queries, as listed in Table 5. The queries
have different levels of difficulties. Some queries, e.g., QS, can be
easily addressed using a common command, while other queries,
e.g., Q1 and Q7, require uncommon or multiple commands. The di­
versity of queries can help improve the generalizability of our re­
sults. For a query that contains multiple commands in the ground­
truth, some commands can be more relevant to the query than the
others. For example, for Q7, cut is more relevant than echo. Similar
to RQ1, both students evaluate the relevance of the ground-truth
commands of each query by five grades 0-4. As listed in Table 5, the
relevance scores of cut and echo of Q7 are 4 and 2, respectively.

We recruit 20 participants (4 faculty members, 2 postdocs, 1 1
PhDs, and 3 MScs) from the second and the third authors' orga­
nizations. They have different years of shell programming expe­
rience, varying from 1-8 years with an average (avg.) of 3.2 years.
We divide them uniformly into four groups while ensuring that the
members in different groups have comparative shell programming
experience. The groups are assigned to different settings: 1) Shell­

Fusion: using the answers generated by ShellFusion; 2) Magnum:

using the answers produced by Magnum; 3) DeepAns: using the
answers recommended by DeepAns; and 4) Web Search (WS): us­
ing web search engines, e.g., Google, only. The numbers of years
of experience in shell programming that the five participants of
ShellFusion, Magnum, DeepAns, and WS have are [1 , 2.5, 3, 4, 5]
(avg.=3. 1), [1 , 2, 3, 3 , 7] (avg.=3.2), [1 , 2, 3 , 3 .5 , 6 .5] (avg.=3.2), and [1 ,
2, 2.5, 3, 8] (avg.=3.3), respectively. Fig. 3 shows the answers pro­
duced by ShellFusion, Magnum, and DeepAns for Q7. The partici­
pants assigned to the three approaches do not know the approach

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

•

•

P CC
GC

∑
Ci ∈CC

r el (Ci)
∑
Cj ∈GC

r el (Cj)
rel(C)

C Ci
S P

Ci S Ci
Ci

S

∑
Ci ∈CC

rel (Ci)×p(Ci)
∑
Cj ∈GC

r el (Cj)
p(Ci)

Ci

Q A
Q A

Q
Q

1978

She i iFusion: Answer Generation for Shel l Programm i ng Tasks Knowledge Fusion I CSE '22, lvlay 2 1 -29, Pittsburgh, PA, USA

Table 5: Ten queries for the user study and the ground-truth commands and scripts of the queries

10

Q5
Q6

Q8

Q!tery

single pdf from multiple text, images

a file from remote server to local
to grep for same string but multiple files
to extract the first tv.ro characters of a

find the largest file a its subdirectories?
to check which process is using nwst memory

ffmpeg(4)

sudo(2), photorec(4)

scp(4)
grep(4)
echo(2), eut(4)
du(4), sort(3), head(2)
ps(4). head(2)

Ground-truth script

yv•Jcc•vc-u; -X -a'"""J-.cnuw•
ffmpeg -i Input.format Output.format
convert Text. txt Text.pdf

pdfunite
sudo photorec DeletedFilePartition
scp RemoteFile LocalFile
grep String File! File2 ..
echo String I cut -c 1-2
du -a Directory I sort -ur I head
ps aux ···sort=-%1ne1n i head

__5210 \Vith the Lin��:?£ .. ::�.?.:!" com1nand, how do I show only C�!.!�Jn lines by number cat(4), sed(4) cat -n Text. txt I sed 'StartLinc,EndLine!d'

that they are using and do not know the differences among the
approaches.

We ask the participants to find shell command(s) and a script
that uses the command(s) for addressing each of the ten queries.
For the assigned to ShellFusion, and Deep­
Ans, they first browse the answers generated for a query and try to
seek for useful commands and the corresponding script from the
answers. If no desired command or script is found, can resort
to web search engines. The participants to WS directly
use web search engines to find useful commands and scripts for
queries. After detennining the commands and for a query,
the pa1ticipants record tl1e results and the time spent on finding
the results. They are allowed to spend at most ten minutes on a
query. We also ask the participants assigned to ShellFusion, Mag­
num, and to evaluate the useji<lness and understandability
of the answers generated for each query by five 0-4.

• Usefulness measures to what extent the
are useful for finding the conmmnds and of a query.
The five are 0- ·extremely useless', 1-' useless' 2-' neutral',
3-'useful', and4-'very useful'. For example, the answers should
be very useful if both the commands and script are included
in the answers.

• Understandability measures whether the
are easy to understand. The five grades are 0- poor',
1-'poor', 2-'neutral ', 3-'good', and 4-'very good'. If the an­
swers are well-organized and have explanations about the
commands and options in the presented scripts, the answers
should have a very good understandability.

1he may answer the queries three different
methods: 1) by themselves if they already know the answers of
a query based on their existing knowledge; 2) the recom­
mended answers; and 3) using web search if they fail to find useful
commands and scripts in the recommended answers. We ask the
participants to record the method used to answer each query.

5.2 Result Analysis

After the user study, we judge the correctness of the commands and
scripts found by the participants. Given the commands found by
a participant P for a query, we identifY the correct commands CC
included in the ground-truth commands GC. We then measure the
correctness of the commands as the ratio of the sum of relevance

1978

of the correct commands to the sum of relevance of the
Lc. -cc reHC;)

tmth commands, i.e., " ,... , ;c-� , where rel(C) is the relevance
L... Cj•:GC r e � �1)

of command C. Next, for each correct command C; , we examine
the script S provided by P and calculate the proportion of the op­
tions ofC; in S among the options ofC; in the ground-truth
If the ground-truth script does not use any option the pro­
portion is 1. We finally measure the correctness of S as the ratio
of the sum of propmtion-weighted relevance of the correct com­
mands to the sum of relevance of the ground-truth commands, i.e.,
Lc "cc rel(C1)xp(C1) • , ,

!; l!C) , where p(C;) ts the proportiOn calculated for
L... LjEGC re ' �1

C;. We find that some queries can be achieved using other com­
mands different from the ground-truth commands. For ex;un]ple
for Q3, pdftk and stapler can be used to merge multiple PDFs
into a single PDF. Both PhD students, who build the ground-truth.
further evaluate the relevance of the commands that do not match
the grmmd-truth. We then measure the correctness of the com­
mands and found by the participants that have not been
measured in the first round.

We observe that there are a mm1ber of queries answered by the
participants the three methods mentioned previously in the
four participant groups, as listed in Table 6. The ' m(n) ' value in
each cell means that the answers to n of the m queries are correct
(i.e., the correctness scores of the commands and scripts provided
by the participants are 1). ShellFusion helps the participants

address the maximum number of queries (i.e., 25) correctly,

In the subsequent analysis, we exclude the results of the
answered by the themselves because such results are
not obtained the experimental settings.

For each of the four groups, we compute the average correctness
of the commands and found by the participants for the ten
queries. We also compute the average time spent on the re­
sults for the ten by each group. For the three groups except
\VS, we compute the average usefulness and understandability of
the answers produced by the corresponding approach.

\Ve further measure the correctness of the commands and scripts
recommended for the ten queries by the three approaches. In terms
of a query Q and an approach A, we first measure multiple cor­
rectness scores of the commands recommended for Q by A with
respect to the ground-tmth commands of Q and the other correct
commands found for Q by each participant. We then determine the

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

Q A

Q A
Q

Q

A

k

1979

ICSE '22, May 21 -29, 2022, Pitts b u rgh, PA, USA

Table 6: The numbers of queries answered by the partici­

pants of the four groups using the three methods. The 'm(n)'
in each cell means that the answers to n of the m queries are

correct.

ShellFusion
Magnum
DeepAns
ws

Q!teries answered
by the participants
themselves
3(2)
0(0)
3(1)
5(4)

Q!teries answered
using the recommended
answers
27(25)
12(6)
5(4)

Q!teries
answered using
Web Search
20(13)
38(26)
42(31)
45(29)

correctness of the commands recommended for Q by A as the max­
imum correctness score. Similarly, we determine the correctness
of the scripts recommended for Q by A as the maximum correct­
ness score measured based on the ground-truth scripts of Q and
the other correct scripts found for Q by the participants. Finally,
we compute the average correctness of the commands and scripts
recommended for the ten queries by A.

For each of the seven evaluated aspects, including the time for
answering the queries, the correctness of the commands and scripts
found by the participants, the usefulness and understandability of
the approaches, and the correctness of the commands and scripts
recommended by the approaches, in addition to the averages (i.e.,
means) of the measured results, we compute the standard devi­
ations of the results for each of the four groups. Moreover, we
measure the statistical significance of the differences between the
results achieved by the participants assigned to ShellFusion and
those achieved by the participants assigned to the other three groups.

Results. ShellFusion has demonstrated its practicality in help­

ing users address shell programming tasks more efficiently

and accurately. Table 7 presents the analysis results of the user
study. In terms of the correctness of the commands and scripts
found by the participants, ShellFusion achieves the best perfor­
mance. The participants assigned to ShellFusion successfully find
91.3% of the correct commands and 88.6% of the correct scripts for
the ten queries, while spending the least amount of time, i.e., an
average of 137.3 seconds, on a query. Compared with WS, ShellFu­
sion improves the correctness of commands and scripts by 2 1 .2%
and 25.0%, respectively, and reduces the average amount of time
that participants need by 44.4%. ShellFusion improves the second­
best approach, DeepAns, by 7.4% and 9.8% in terms of the cor­
rectness of commands and scripts found by the participants, re­
spectively, and reduces the average amount of time that the par­
ticipants need by 30.7%. This can be explained by the fact that
ShellFusion recommends more correct commands and scripts than
DeepAns and Magnum for the queries, as listed in Table 7. The use­
fulness and understandability scores of ShellFusion are high (i.e.,
3.553 and 3.766) and are much higher than those of Magnum and
DeepAns. Furthermore, the advantage of ShellFusion over Deep­
Ans and Magnum is significant in terms of the usefulness and un­
derstandability of the produced answers and the correctness of the
recommended commands and scripts in most cases. All these indi­
cate that the answers generated by ShellFusion are more help­

ful for finding correct commands and scripts for queries and

easier to understand.

The standard deviations of the results obtained by the partic­
ipants assigned to ShellFusion are all smaller than those of the

1979

Neng Zhang, Chao Liu, Xin Xia, C h ristoph Treude, Ying Zou, David Lo, and Zibin Zheng

results obtained by the participants assigned to the other groups.
This further indicates that shell programmers can achieve more

stable performance using ShellFusion than using Magnum,

DeepAns, or WS.

The participants provide some comments about ShellFusion. They
express that most of the recommended commands are helpful for
addressing the queries and the presented knowledge of the com­
mands and options are useful to help users quickly judge useful­
ness of the commands and scripts. However, the participants point
out that ShellFusion only recommends a single command in a gen­
erated answer, which may not be suitable for the tasks that need
to be addressed by combining multiple commands.

6 THREATS TO VALIDITY

Threats to internal validity relate to the errors in the implemen­
tation of ShellFusion and the baselines, and the bias of participants
in the manual evaluation of recommended commands and gener­
ated answers. For ShellFusion and its variants, we double-check
the code and make sure that the experimental queries are not in­
cluded in the question repository. For Magnum and DeepAns, we
carefully implement them using their published code. When eval­
uating the relevance of the commands recommended for queries,
we recruit two PhD students with relatively high (i.e., more than
five years of) experience in shell programming to reduce a single
person's subjective judgment. In our user study, the participants'
carefulness and lack of knowledge about shell commands may af­
fect the evaluation results. To reduce this threat, we recruit partici­
pants interested in the user study and make sure the participants in
different groups have comparative shell programming experience.

Threats to external validity relate to the generalizability of ex­
periment results. We implement ShellFusion based on 537, 129 shell­
related questions with accepted answers from four Q&A sites. We
create 434 experimental queries from other shell-related questions
with a relatively high viewcount and score. The large and high­
quality dataset can improve the generalizability of our quantitative
results. As the user study requires significant manual effort, we use
ten queries. The queries have different levels of difficulties, which
can improve the generalizability of our user study results.

Threats to construct validity relate to the suitability of evalu­
ation metrics. We use MRR@K and MAP@K for evaluating the
top-k recommended shell commands as the two metrics are widely
used for evaluating ranking problems in information retrieval [26,
38, 46, 48, 52] . The relevance, usefulness, and understandability
metrics are also widely used for evaluating recommendation and
summarization tasks in software engineering [19, 37, 39, 48].

7 RELATED WORK

Shell programming tutorials and tools. It is impossible for shell
programmers to remember thousands of shell commands with var­
ious options. A good way to help users learn and use the com­
mands is by explaining them with examples. Towards this direc­
tion, some work has been done [27, 34, 36, 40] . For example, So­
bell [40] provides a practical guide to utilities, basic commands,

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

1980

Shel l Fusion: Answer Generation for Shel l Progra m m i ng Tasks via Knowledge Fusion ICSE '22, May 2 1 -29, 2022, Pitts b u rgh, PA, USA

Table 7: The means and standard deviations of the user study results with respect to seven evaluated aspects, as well as the

statistical significance of the differences between the results achieved by the participants assigned to ShellFusion and those

achieved by the participants assigned to Magnum, DeepAns, and WS. The first and the second values in each cell are the mean

and the standard deviation, respectively. Note that the results of the queries answered by the participants themselves (as listed

in Table 6) are excluded.

Correctness of the Correctness of the Correctness of the Correctness of the
Time

in second
commands found by scripts found by Usefulness Understandability commands recommended scripts recommended

the participants the participants by the approach by the approach

Shel!Fusion (137.3, 97.6) (0.913, 0.209) (0.886, 0.260) (3.553, 1.048) (3. 766, 0.554) (0.910, 0.188) (0.893, 0.215)
Magnum (160.9, 137.0) (0.844, 0.303) (0.762, 0.367) (1 .500""", 1.565) (1 . 120""", 1.227) (0.478", 0.482) (0.31 1"", 0.418)
DeepAns (198.0, 169.5) (0.850, 0.319) (0.807, 0.360) (1 .979""", 1.345) (2.383""", 1.043) (0.600, 0.437) (0.400", 0.437)
ws (246.8"", 194.2) (0.753, 0.392) (0.709", 0.417)

***p<O.OOl, **p<O.Ol, *p<O.OS

and shell programming in Linux. Negus and Casen [34] build a tool­
box for 1 ,000+ Ubuntu commands related to file manipulation, mul­
timedia playing, etc. Lauet al. [27] describe an approach, SMARTshell,

that can assist users in learning shell scripts by demonstration.
There are some other tutorials built by communities, e.g., TLDR [1 1]
and Cheat [3] . These tutorials are helpful, however, they require a
great amount of manual effort and contain only a few examples
for a limited number of basic or frequently used commands. They
do not provide a mechanism to search for commands by a task.

Several approaches and tools are proposed to support shell pro­
gramming. Chakraborti et al. [18] present a platform, Ubuntu World
1.0 LTS, for developing an automated technical support agent in
Ubuntu. Lin et al. [29] build a dataset, NL2Bash that contains 9,305
task-command pairs, for the problem of mapping a task to the cor­
responding Bash command. They present three baselines for ad­
dressing the problem by leveraging three neural machine trans­
lation models: Seq2Seq [42], CopyNet [23] , and Tellina [28]. Dur­
ing the NLC2CMD competition held at NeuriPS 2020 [15] , six ap­
proaches, e.g., Magnum, are developed for translating natural lan­
guage to Bash commands using the NL2Bash dataset. Agarwal et
al. [14] present the design and implementation of a platform, CLAI,
which aims to bring the power of AI, e.g., the approaches devel­
oped in the NLC2CMD challenge, to the command line interface.
However, these approaches and tools are limited by the NL2Bash
dataset which only covers 102 commands and 206 options.

Different from the existing tutorials and tools that are limited by
manually created datasets, we develop ShellFusion that integrates
Q&A posts, MPs, and TLDR to recommend shell commands and
generate comprehensive answers for programming tasks.

Mining Q&A communities. The rich data in Q&A communities
has been widely explored by researchers to understand software
development practices and build tools for software development
tasks. Wan et al. [44] analyze the discussion topics of blockchain
in SO using a balanced LDA model. Nashehi et al. [33] study the
factors that make an effective code example through a qualitative
analysis of SO posts. Rahman et al. [38] propose an API recommen­
dation approach, RACK, by mining keyword-API mappings from
SO posts. Nie et al. [35] propose a code search approach by expand­
ing queries with keywords extracted from SO posts. Gao et al. [22]
propose DeepAns to recommend relevant answers for queries by
searching Q&A pairs. Our ShellFusion also uses Q&A posts, but
we focus on generating answers for shell programming tasks.

1980

API recommendation. API recommendation is a research hot­
spot in software engineering [24, 26, 31 , 38] . For example, McMil­
lan et al. [31] propose Portfolio to recommend C/C++ functions
for queries from a large archive of C!C++ source code. Huang et
al. [26] propose BIKER for API recommendation by leveraging SO
posts and API documentation. Gu et al. [24] develop an RNN-based
approach, DeepAPI, that can generate API sequences for queries
by mining code repositories. Moreover, there are many approaches
proposed for recommending web APis [25, 46, 4 7] which are widely
used in distributed software development. In contrast, we propose
an approach that integrates knowledge from multiple information
sources to recommend shell commands.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose ShellFusion to automatically generate
answers for shell programming tasks. We integrate shell-related
knowledge mined from Q&A posts, Ubuntu MPs, and TLDR tu­
torials. Given a query, ShellFusion extracts candidate commands
with options from the accepted answers of questions similar to the
query. It then filters out irrelevant commands and ranks the refined
commands by considering their similarities with the query and the
similar questions with accepted answers that use the commands.
Finally, ShellFusion generates an answer for each command by
synthesizing valuable knowledge mined from the three informa­
tion sources. Evaluation results on 434 experimental queries con­
firm the effectiveness ofShellFusion. A user study shows that Shell­
Fusion can help users find useful commands and scripts for shell
programming tasks efficiently and accurately. In future work, we
will improve ShellFusion to recommend collaborative commands
with usage templates for complex tasks that involve multiple com­
mands. Moreover, we plan to implement an easy-to-use interface
for ShellFusion (e.g., using Docker).

ACKNOWLEDGMENTS

This research/project is supported by the National Natural Science
Foundation of China (No. 62032025), and the National Research
Foundation, Singapore, under its Industry Alignment Fund - Pre­
positioning (IAF-PP) Funding Initiative. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of National Re­
search Foundation, Singapore.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

1981

I CS E '22, May 21-29, 2022, Pittsb u rgh , PA, USA

REFERENCES
[1] 2022. Ask Ubuntu. https://askubuntu.com
[2] 2022. Bro pages. http:/ /bropages.org/
[3] 2022. Cheat. https://github.com/cheat/cheat
[4] 2022. DeepAns. https://github.com/beyondacm/DeepAns
[5] 2022. Gensim. https://radimrehurek.com/gensim
[6] 2022. Magnum-NLC2CMD. https:// github.com/magnumresearchgroup/

Magnum-NLC2CMD
[7] 2022. ShellFusion. https://github.com/nengz/ShellFusion
[8] 2022. Stack Exchange Data Dump. https://archive.org/download/stackexchange
[9] 2022. Stack Overflow. https://stackoverflow.com

[10] 2022. Super User. https://superuser.com
[1 1] 2022. TIDR. https://github.com/tldr-pages/tldr
[12] 2022. Ubuntu Manual Pages. http://manpages.ubuntu.com
[13] 2022. Unix & Linux. https://unix.stackexchange.com
[14] Mayank Agarwal, Jorge J Barroso, Tathagata Chakraborti, Eli M Dow, Kshitij

Fadnis, Borja Godoy, Madhavan Pallan, and Karlik Talamadupula. 2020. Project
clai: Instrumenting the command line as a new environment for ai agents. arXiv
preprint arXiv:2002.00762 (2020).

[15] Mayank Agarwal, Tathagata Chakraborti, Qllchen Fu, David Gras, Xi Victoria
Lin, Jaron Maene, Karlik Talamadupula, Zhongwei Teng, and Jules White. 2021.
Neur!PS 2020 NLC2CMD Competition: Translating Natural Language to Bash
Commands. arXiv preprint arXiv:2103.02523 (2021).

[16] Akiko Aizawa. 2003. An information-theoretic perspective of tf-idf measures.
Information Processing & Management 39, 1 (2003), 45-65.

[17] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing
with Python: analyzing text with the natural language toolkit. 0 'Reilly Media,
Inc.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Tathagata Chakraborti, Karlik Talamadupula, Kshitij P Fadnis, Murray Camp­
bell, and Subbarao Kambhampati. 2017. UbuntuWorld 1.0 LTS-A Platform for
Automated Problem Solving & Troubleshooting in the Ubuntu OS. In Twenty­
Ninth MAI Conference.
Andrea Di Sorbo, Sebastiana Panichella, Carol V Alexandru, Junji Shimagaki,
Corrado A Visaggio, Gerardo Canfora, and Harald C Gall. 2016. What would
users change in my app? summarizing app reviews for recommending software
changes. In Proceedings of the 2016 24th ACM SIGSOFI International Symposium
on Foundations of Software Engineering. 499-510.
Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological Bulletin 76, 5 (1971), 378.
Ishaan Gandhi and Anshula Gandhi. 2020. Lightening the Cognitive Load of
Shell Programming. (2020).
Zhipeng Gao, Xin Xia, David Lo, and John Grundy. 2020. Technical Q8A Site
Answer Recommendation via Qyestion Boosting. ACM Transactions on Software
Engineering and Methodology (TOSEM) 30, 1 (2020), 1-34.
Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016. Incorporat­
ing copying mechanism in sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393 (2016).
Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo­
sium on Foundations of Software Engineering. 631-642.
Yan Hu, Qimin Peng, Xiaohui Hu, and Rang Yang. 2014. Time aware and data
sparsity tolerant web service recommendation based on improved collaborative
filtering. IEEE Transactions on Services Computing 8, 5 (2014), 782-794.
Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API
method recommendation without worrying about the task-API knowledge gap.
In 2018 33rd IEEEIACM International Conference on Automated Software Engineer­
ing (ASE). IEEE, 293-304.
Tessa Lau, Lawrence Bergman, Vittorio Castelli, and Daniel Oblinger. 2004. Pro­
gramming shell scripts by demonstration. In Workshop on Supervisory Control of
Learning and Adaptive Systems, AAAI, Vol. 4.
Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin Vu, and Michael D Ernst.
2017. Program synthesis from natural language using recurrent neural networks.
University of Washington Department of Computer Science and Engineering, Seat­
tle, WA, USA, Tech. Rep. UW-CSE-17-03-01 (2017).
Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D Ernst. 2018.
NL2Bash: A corpus and semantic parser for natural language interface to the
linux operating system. arXiv preprint arXiv:1802.08979 (2018).
Erik Linstead, Sushi! Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and
Pierre Baldi. 2009. Sourcerer: mining and searching internet-scale software
repositories. Data Mining and Knowledge Discovery 18, 2 (2009), 300-336.
Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
201 1 . Portfolio: finding relevant functions and their usage. In Proceedings of the
33rd International Conference on Software Engineering. 1 1 1- 1 20.
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 311 1-31 19.

1981

Neng Zhang, Chao L iu , Xin Xia, Ch ristoph Treude, Ying Zou, David Lo, and Zibin Zheng

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[5 1]

[52]

Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012.
What makes a good code example?: A study of programming Q&A in Stack­
Overflow. In 2012 28th IEEE International Conference on Software Maintenance
(ICSM). IEEE, 25-34.
Christopher Negus. 2013. Ubuntu Linux Toolbox: 1000+ Commands for Power
Users. John Wiley & Sons.
Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xiaochen Li. 2016. Qllery expan­
sion based on crowd knowledge for code search. IEEE Transactions on Services
Computing 9, 5 (2016), 771-783.
Ellie Qlligley. 2005. Unix Shells by example. Prentice Hall Professional Technical
Reference.
Dragomir Radev and Weiguo Fan. 2000. Automatic summarization of search
engine hit lists. In ACL-2000 Workshop on Recent Advances in Natural Language
Processing and Information Retrieval. 99-109.
Mohammad Masudur Rahman, Chanchal K Roy, and David Lo. 2016. Rack:
Automatic api recommendation using crowdsourced knowledge. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1. IEEE, 349-359.
Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario Linares­
Vasquez, Denys Poshyvanyk, and Rocco Oliveto. 2017. Automatically assessing
code understandability: How far are we?. In 2017 32nd IEEEIACM International
Conference on Automated Software Engineering (ASE). IEEE, 417-427.
Mark G Sobel!. 2013. A practical guide to Linux commands, editors, and shell
programming. Prentice Hall.
Volker Steinbiss, Bach-Hiep Tran, and Hermann Ney. 1994. Improvements in
beam search. In Third international conference on spoken language processing.
Ilya Sutskever, Oriol Vinyals, and Qlloc V Le. 2014. Sequence to sequence learn­
ing with neural networks. In Advances in neural information processing systems.
3104-3112.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in neural information processing systems. 5998-6008.
Zhiyuan Wan, Xin Xia, and Ahmed E Hassan. 2019. What is discussed about
blockchain? a case study on the use of balanced lda and the reference archi­
tecture of a domain to capture online discussions about blockchain platforms
across the stack exchange communities. IEEE Transactions on Software Engineer­
ing (2019).
Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break­
throughs in statistics. Springer, 196-202.
FangXie,Jian Wang, Ruibin Xiong, Neng Zhang, Yutao Ma, and Keqing He. 2019.
An integrated service recommendation approach for service-based system devel­
opment. Expert Systems With Applications 123 (2019), 178-194.
Ruibin Xiong,Jian Wang, Neng Zhang, and Yutao Ma. 2018. Deep hybrid collab­
orative filtering for web service recommendation. Expert systems with Applica­
tions 1 10 (2018), 19 1-205.
Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: Au­
tomated generation of answer summary to developers' technical questions. In
2017 32nd IEEEIACM International Conference on Automated Software Engineer­
ing (ASE). IEEE, 706-716.
Deheng Ye, Zhenchang Xing, and Nachiket Kapre. 2017. The structure and dy­
namics of knowledge network in domain-specific Q&A sites: a case study of
stack overflow. Empirical Software Engineering 22 (2017), 375-406.
Xin Ye, Hui Sherr, Xiao Ma, Razvan Bunescu, and Chang Liu. 2016. From word
embeddings to document similarities for improved information retrieval in soft­
ware engineering. In Proceedings of the 38th international conference on software
engineering. ACM, 404-415.
Neng Zhang, Qiao Huang, Xin Xia, Ying Zou, David Lo, and Zhenchang Xing.
2020. Chatbot4QR: Interactive Qllery Refinement for Technical Qllestion Re­
trieval. IEEE Transactions on Software Engineering (2020).
Neng Zhang,Jian Wang, Yutao Ma, KeqingHe, ZhengLi, andXiaoqingFrankLiu.
2018. Web service discovery based on goal-oriented query expansion. Journal
of Systems and Software 142 (2018), 73-91.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

