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INTRODUCTION

The ultimate goal of cloud computing is to 
enable everything as a service (XaaS) (NIST, 
2011), where Software as a Service (SaaS) is 
one core objective. While software being pub-
lished as universally accessible Web services, 

users can leverage existing services and quickly 
compose new value-added business processes 
and services. However, as cloud has become 
an unprecedented driving factor to encourage 
people to publish and share software as services, 
how to effectively and efficiently discover in-
terested services from a “cloud” of resources 
remains a big challenge.
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One major technique is to establish service 
registries (Zhang et al., 2007) as centralized 
“service yellow pages” to help users find inter-
ested services. Earlier Universal Description, 
Discovery, and Integration (UDDI) registries are 
going out of date, however. Two major reasons 
are their tight binding to SOAP/WSDL services 
and their over standardization. In recent years, 
REpresentational State Transfer (REST) ser-
vice, a light-weight HTTP Request/Response-
based service style, has rapidly emerged and 
caught significant momentum (Pautasso et al., 
2008). Thus, many non-UDDI service regis-
tries have been developed. Among them, The 
ProgrammableWeb (PW, http://www.program-
mableweb.com, acquired by Alcatel-Lucent in 
2010) has become a popular one.

Without adopting the heavy UDDI standard, 
ProgrammableWeb provides a repository that 
allows people to publish reusable Web services 
in various formats (protocols including REST 
and SOAP), called Web APIs. Meanwhile, PW 
allows people to publish API-based applica-
tions, called mashups. A mashup represents a 
value-added business process leveraging one 
or more existing APIs published in PW. Such 
a light-weight service repository has attracted 
extensive attention. Since its inception in late 
2005, the number of services published at PW 
has increased rapidly. Up to September 7, 
2012, 7190 services and 6,763 mashups have 
been published at PW. Among the published 
services, 70% are REST services, 21% are 
SOAP services, 5% are JavaScript services, 
and 2% are XML-RPC services. Since APIs 
at PW represent reusable service components, 
throughout this paper, we will use the terms 
API and service interchangeably.

As the number of services accumulates at 
PW, it is important to facilitate users in query-
ing and finding interested services (Gomadam 
et al., 2008). However, the current querying 
power at PW is limited. At publishing time, 
service providers are allowed to attach some 
user-defined name tags. Unlike UDDI that 
intends to regulate a comprehensive ontology 
system, ProgrammableWeb adopts a straight-
forward strategy. Every service is manually 

categorized into one of a preset list of domains 
(68 domains up to September 7, 2012) (Arab-
shian et al., 2012). The assigned domain name 
and provider-defined tags associated with the 
service are combined to support keyword-based 
search function.

Such an API search mechanism may cause 
confusion and decrease search accuracy. First, 
the manual process of service categorization 
may not be accurate. As a matter of fact, API 
“ShowMyIP” was originally classified in do-
main “Mapping”; and was moved to domain 
“Internet” later. In the metadata of the API, its 
description, summary and tags contain some 
representative keywords of domain “Internet” 
such as “IP” and “Internet.” Second, it may be 
difficult to decide one single domain for some 
APIs, because some predefined domains over-
lap with each other conceptually. For example, 
domains Travel, Transportation, and Weather 
share many common concepts. For another 
example, the aforementioned  API “ShowMyIP” 
does relate to the category “Mapping” in ad-
dition to the category of “Internet.” Third, PW 
presets a special domain named “Other” and a 
significant number of services are found left in 
the category. Currently, 199 services are listed 
in the category of “Other,” which is the top 14th 
category with the most number of services (over 
the entire 68 preset domains). Fourth, user-
defined tags may be ad	hoc and inconsistent, 
and sometimes lack of tag (Gomadam et al., 
2008), cannot effectively help users find their 
interested services.

Table 1 shows some motivating examples. 
The second column shows the category name 
assigned to the Web API (whose name is in the 
first column) by ProgrammableWeb. However, 
as shown in the third column, our study indicates 
that these Web APIs should belong to several 
categories (domains). The names of the Web 
APIs even imply such cross-relationships. For 
example, users should be able to find the API 
“BestParking” from the Travel, Transportation, 
or Mapping categories. (The numbers represent 
the similarity between a Web API to a corre-
sponding category. For another example, the 
API “StrikeIron Address Distance” is listed in 
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the category of “Other.” However, our study 
of the descriptions of the API revealed that 
it should be listed in three categories: Travel, 
Transportation, and Mapping. The details of 
how to obtain such similarity will be discussed.)

Therefore, there exists a need for existing 
non-UDDI service repositories to enhance their 
service categorization accuracy, and in turn 
enhance their query and search ability. While 
such an ability will attract more service users 
to visit the repository, it will also attract more 
service providers to publish their services at 
the site.

This paper reports our approach that adapts 
the Support Vector Machine (SVM) technique 
to enhance service categorization on service 
repositories. While an SVM engine being con-
structed as a black-box service, we propose a 
pair of customizable input and output functions 

to increase its categorization accuracy based 
on incrementally enriched and refined domain 
knowledge. Our extended SVM technique has 
three major contributions: one is to verify and 
refine existing author/user-centered service 
categorization; second is to enrich domain 
ontology; third is to support in automatically 
annotating (tagging) services. Our experimental 
results show that our approach surpasses the 
tag-based search approach used by Program-
mableWeb, as well as directly applying text 
document classification approaches to service 
categorization.

The remainder of the paper is organized as 
follows. First, we discuss related work. Then, we 
introduce our extensions to SVM. Afterwards, 
we present our ontology-empowered SVM 
technique, and how it can be used to support 
service categorization, respectively. Followed 

Table	1.	Motivating	examples	

API Name Original Category Categories Related

BestParking Travel Travel (0.9261) 
Transportation (0.2732) 
Mapping (0.4139)

RunwayFinder Travel Travel (0.4864) 
Transportation( 0.1715) 
Mapping (0.8629)

Trazzler Travel Travel (0.9319) 
Transportation (0.2644) 
Mapping (0.6502)

TripTracker Travel Travel (0.9327) 
Transportation (0.2703) 
Mapping (0.8807)

Urban Mapping Mass Transit Proximity Travel Travel (0.5158) 
Transportation (0.8632) 
Mapping (0.4099)

Mapnificent Transportation Travel (0.9337) 
Transportation (0.6907) 
Mapping (0.7003)

NAC Real-time Routing Mapping Travel (0.9289) 
Transportation (0.2755) 
Mapping (0.7446)

StrikeIron Address Distance Other Travel (0.5586) 
Transportation (0.2564) 
Mapping (0.5805)
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by a presentation experimental settings and 
preliminary results and analysis. Finally, we 
then draw conclusions.

RELATED WORK

The work presented in this paper will further 
advance the research in semantics-empowered 
Web services discovery. Although the literature 
has witnessed a rich set of research results in 
the area, most of them are oriented to SOAP 
services supported by a formal service de-
scription model embedded in WSDL. OWL-S 
(Coalition, 2004) describes services in terms 
of profile, process, and grounding. SAWSDL 
(Kopecky et al., 2007) proposes to annotate 
WSDL components such as inputs/outputs 
with references to ontologies. WSMO (Vitvar 
et al., 2007) advocates to model Web services 
using four major elements of ontologies, Web 
services, goals, and mediators. Paolucci et al. 
(2002) map DAML-S service profiles to UDDI 
records; Sivashanmugam et al. (2004) map se-
mantic Web service descriptions in SAWSDL to 
UDDI. Dong et al. (2004) present a clustering 
method to cluster parameters present in inputs 
and outputs of WSDL operations. Hess and 
Kushmerick (2003) apply Naive Bayes and 
SVM machine learning methods to categorize 
WSDL files in manually defined hierarchies. 
In contrast, this research accumulates semantic 
data from fragmental descriptive elements from 
various types of services not limited to SOAP 
services.

Most of semantic services discovery re-
search performs profile-based service signature 
(I/O) matching (Klusch et al., 2006). OWLS-
MX (Klusch et al., 2006) and WSMO-MX 
(Klusch & Kaufer 2009) propose to combine 
logic-based reasoning and syntactic concept 
similarity computations in OWL-S. Sbodio et al. 
(2010) propose to use SPARQL as a formal lan-
guage to describe the pre- and post-conditions 
of services. Junghans et al. (2010) propose a 
practical formalism to describe functionalities 

and service requests. In contrast, we focus on 
enriching domain ontology and leveraging it 
to classify services.

Since the ad	 hoc standard Web Service 
Descriptions Language (WSDL) does not 
carry semantic information, automatic service 
discovery remains a challenge. As one important 
aspect, service categorization research, i.e., ser-
vice classification, aims to explore a mechanism 
to automatically verify the domain(s) to which 
a service belongs. Such research efforts gener-
ally follow two directions. One direction is to 
extend WSDL with abilities to carry semantic 
information of services. Leveraging semantic 
web technologies, a number of languages have 
been developed, including OWL-S (Martin et 
al., 2007), WSDL-S (Akkiraju et al., 2005), and 
WSMO (Klusch & Kaufer, 2009).

The other direction focuses on eliciting 
semantic knowledge from textual description 
documents associated with Web services, lever-
aging the Information Retrieval (IR) techniques. 
Typical strategy is to extract features from 
Web service description documents using IR 
methods such as text retrieval, vector model 
and clustering. However, few of the existing 
efforts address the issue of high dimensional-
ity of feature space. If Web service description 
documents carry a large number of different 
terms, which are treated as features by IR clas-
sifiers, a large feature space may lead to low 
performance and low accuracy.

Some researchers exploit the structure of 
WSDL documents to categorize Web services. 
For example, our previous work (Zhang et al., 
2011) and Liu et al. (2011) leverage bipartite 
graphs to calculate similarity between Web 
services based on WSDL documents; Patil et 
al. (2004) adopt a schemamatching similar-
ity matching method. In contrast, our work 
presented in this paper focuses on leveraging 
domain knowledge to highlight significant 
dimensions of feature space.

The IR community has created a wealth of 
clustering algorithms and techniques (Yang & 
Liu, 1999). In contrast to these general-purpose 
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text categorization technologies, our work aims 
at services discovery and targeting on service 
repositories with embedded ontological infor-
mation, which can be exploited to facilitate 
service categorization when the scale of the 
training data set is not large enough.

As REST services become popular, many 
researchers have started to explore how to add 
semantics to REST services. SA-REST (Sheth 
et al., 2007) semantically annotates REST ser-
vices by adding annotations to Web pages that 
describe the services. Semantic Bridge for Web 
Services (SBWS) (Battle and Benson 2008) 
provides custom annotations to WADL (Web 
Application Description Language) (Hadley, 
2009) documents. However, these annotate 
processes are difficult and costly (Lee & Kim, 
2011).

Generic search engines such as Google can 
help discover Web services (APIs) and mashups 
through keywords. The ProgrammableWeb site 
leverages Google search facility to provide tag-
based search function. Studies have indicated 
the limitation of keyword-based search method 
without considering semantic data (Lee & Kim, 
2011). In contrast, we propose an approach to 
verify and refine user tags to enhance service 
and mashup discovery.

Gomadam et al. (2008) adopted the tra-
ditional term vector similarity approach and 
faceted classification (Ranganathan, 1962) to 
categorize the Web APIs at ProgrammableWeb. 
A term vector and a tag vector are built for each 
domain. Each API is compared against the term 
vector and the tag vector of each domain us-
ing the cosine similarity approach. They also 
present a PageRank-inspired service utilization 
(serviut) approach to rank services in a category. 
In contrast, our approach proposes to leverage 
domain knowledge to enhance traditional SVM 
(a popular text categorization method) in the 
context of service categorization. In addition, 
we leverage their serviut rank method as part 
of our service recommendation criteria.

Domain-specific ontologies are normally 
developed manually through the collaboration 
of highly skilled domain experts and ontology 
engineers (Lee & Kim, 2011). A number of 

works have been reported on automatic acqui-
sition of semantic information to build ontol-
ogy. Sabou et al. (2005b) present an approach 
that extracts domain ontologies from textual 
documents associated with Web services. Segev 
and Zheng (2010) propose an ontology boot-
strapping method that automatically generates 
concepts and their relations in a domain from 
WSDL files. Our earlier research presents an 
approach that automatically extract semantic 
information from WSDL files, based on the 
hypothesis that service developers usually fol-
low naming convention (Zhang et al., 2011). 
Lee and Kim (2011) use Sun’s WADL (Hadley, 
2009) (SUN) to describe syntactical informa-
tion of REST services, and study how to enable 
similarity search over RESTful services based 
on their syntactic and semantic descriptions. A 
learning ontology method is proposed to seman-
tically describe REST services, which groups 
parameter names of services into semantically 
meaningful concepts and capture relationships 
between words contained in a parameter name. 
In contrast, we focus on incrementally build 
domain concepts and their relationships from 
fragmental semantic data.

Liu et al. (2011) derive semantic relations 
between services based on their associated 
tags, and consequently build a directed service 
graph to guide potential service composition. In 
contrast, we categorize services based on their 
associated semantic information including de-
scriptions, tags, and categorization information.

Zhang and Li introduce the concept of 
service cluster (Zhang & Li, 2004) to represent 
a collection of available services provided by 
multiple service providers to perform a specific 
common function. Here we borrow the concept 
and extend the SVM technique to help verify 
and justify service clusters.

EXTENDED SVM TECHNIQUE

Existing service categorization usually adopts 
Information Retrieval (IR) similarity models 
such as vector space models, probabilistic 
models, and information theory-based mod-
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els (Dasgupta et al., 2011). Their underlying 
technique is semantic similarity measurement 
between services, either based on keywords 
(Corella & Castells, 2006) or on ontology 
(Bianchini et al., 2006). The former method 
uses the Term Frequency – Inverse Document 
Frequency (TF-IDF) (Jones, 1972) technique 
to build a vector space; the latter leverages 
taxonomy, information content (IC), or con-
cept property to calculate similarity between 
services. However, two reasons make service 
categorization challenging if we directly ap-
ply these methods. First, services are usually 
published without comprehensive descriptions. 
For example, we can only find on Program-
mableWeb service information from its name, 
domain name, user-specified tags, summary, 
and short description. Second, it is known that 
acquisition of domain ontologies is difficult 
and costly (Sabou et al., 2005a; Lee & Kim, 
2011). Therefore, this research aims to address 
these challenges by exploring an approach that 
incrementally establishes domain knowledge, 
and leverages such knowledge to automatically 
verify and enhance service categorization.

Applying SVM Technique

It is known that the Support Vector Machine 
(SVM) method outperforms (accuracy of 
classification) other text categorization meth-
ods (Yang & Liu, 1999), especially when the 
number of dimensions of the documents under 
consideration is significant. Verifying and jus-
tifying the categorization of services may not 
be a trivial task, since service descriptions are 
free text documents that may comprise various 
terms. Therefore, it is suitable to apply the SVM 
method for service categorization.

We construct a SVM model by formalizing 
service classification as an optimization prob-
lem (Boser et al., 1992). Given a training set 
of pairs ( , )x y

i i
, i S

T
∈  where x S

i
n∈  repre-

senting each service in the form of an n-dimen-
sion vector, and y

i
∈ −{ , }1 1  indicating 

whether a service belongs to the domain or not. 
The SVM model aims to find a solution to:

min( )
, ,

| |

w b

T

i

S

i
w w C

T

ξ
ξ

1

2 1

+
=
∑  

subject to: 

y w x
i i i i

T b∅ ξ ξ( )+( ) ≥ − ≥1 0, .  

Training vectors xi are mapped into a 
higher dimensional space by the function ∅ . 
SVM will find a linear separating hyperplane 
with the maximal margin in the higher dimen-
sional space. C > 0  is a penalty parameter of 
the error service.

We construct a single-class SVM aiming 
to find a line to split the domain relevance and 
domain irrelevance in high-dimensional vectors 
(Yang & Liu, 1999). As we discussed earlier, 
a service may fit in one domain the best while 
naturally relating to multiple domains. Our 
goal is to find out all such relative domains, as 
well as the similarity between one service and 
each related domain (details will be discussed 
later). That is why we decided to use the single-
class SVM.

Figure 1 shows the high-level workflow 
of how we directly apply the SVM approach 
to conduct service categorization. The input 
of the process is a repository of services; the 
output is the classified services and the ranking 
of the domain keywords (domain ontology). 
The workflow comprises three phases. First, 
a vector space is constructed from all input 
services based on the TF-IDF formula. Second, 
a SVM classification model is built based on 
a selected training service set, and then runs 
over the entire service repository (i.e., testing 
service set) to classify each comprising service 
as either domain-relevant or domain-irrelevant. 
Third, the mutual information (MI) value of 
each keyword in the testing set is calculated 
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to represent the ranking of the keyword in the 
domain.

Issues and Strategy

Applying the above approach to the service 
repository ProgrammableWeb, we found that 
the categorization results are not satisfactory in 
a number of domains. Analyzing the reasons, we 
identified several significant issues. Successful 
training of the SVM classification model heavily 
depends on the scale and the precision of the 
training set. A service repository, however, usu-
ally has an unbalanced distribution of services 
in different domains. For example, the Internet 
domain contains 472 Web APIs, and the Social 
domain contains 407 APIs. However, some 
domains contain a smaller number of services. 
For example, the Dictionary category contains 
14 Web APIs, and the Politics domain contains 
5 APIs. Such small training sets cannot train a 
good SVM model. Meanwhile, ad	hoc service 
categorization decided by ProgrammableWeb 
may not always be accurate (Arabshian et al., 
2012).

After carefully examining Program-
mableWeb, we noticed one unique feature. 
The services registered at the repository are 
organized into 68 separate domains. In other 
words, services categorized within the same 
domain should share the same domain ontol-
ogy. Thus, we made an important hypothesis: 
domain	 ontology	may	 help	 build	 a	more	 in-
structive	vector	space	as	the	input	to	the	SVM, 
so as to enhance the quality of the training set 
and in turn enhance categorization accuracy. 

The supporting assumption is that, descriptive 
information associated with published services 
in a domain represents ontology and domain 
knowledge of the domain. Such information 
includes service name, domain name, summary, 
tags, and short description. For SOAP services, 
descriptive information also includes operation 
names in WSDL files, usually following naming 
conventions and implying semantic intension 
(Zhang et al., 2011).

Our idea is to incrementally build knowl-
edge for each domain based on information 
derived from its comprised registered services. 
We thus enhanced the algorithm used to measure 
keyword-based service similarity, i.e., TF-IDF, 
which does not take into account features in 
corresponding domain knowledge. When TF-
IDF calculates the significance of a term in a 
document, it does not consider the significance 
of the term in the corresponding domain.

Enhancement to TF-IDF

Figure 2 illustrates our extensions to the tra-
ditional TF-IDF (Jones, 1972). TF-IDF aims 
to calculate the weight (wj,i) of every term (tj,i) 
inside of document (di). It indicates the impor-
tance of the term, against the entire document 
repository. Equation (1) shows that, the more 
documents in which a term appears, the less 
important the term is.

tf idf w tf idf
c d

d t d
j i j i j

j i

k k i j iC

− = × = ×
+ ∈

( ) log
{ }

{ : }
, ,

,

, ,
Σ 1

 

(1)

Figure	1.	Directly	applying	SVM	technique
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In contrast to TF-IDF that measures be-
tween one document and corpus (the entire set 
of documents), we break TF-IDF into two parts. 
As shown in Figure 2, two new concepts are 
introduced: (1) keyword frequency – inverse 
document frequency – domain frequency (KF-
IDF-DF) and (2) keyword frequency – inverse 
repository frequency (KF-IRF). KF-IDF-DF 
intends to measure between a service and its 
corresponding domain; while KF-IRF intends 
to measure between a domain and the entire 
service repository.

Note that keywords here represent terms 
that are significant enough to facilitate service 
categorization. This also explains our rationale 
of using keywords instead of all terms: keywords 
will decide service categorization. In the context 
of ProgrammableWeb, as well as similar tag-
empowered service repositories, all tags are 
considered as highlighted keywords – important 
terms represent a domain. As the first step, we 
use ranked domain-specific keywords to repre-
sent the relationships among domain ontology.

Equation (2) shows how we calculate the 
significance of keyword (k) in service (s) re-
garding domain (d). rank(k,d) represents the 
rank of the keyword (k) in the domain ontol-
ogy (d). If a keyword highly represents a domain 
(it ranks in the top Ω  keywords, e.g., the top 
100 keywords), its tf-idf value will be amplified.

kf idf df

tf idf
k d

k s d

k s

− −

=
− ⋅ + −













⋅

, ,

,
( (

( , )
/ ) )1 1

rank
 

Ω
Ω β     rank(

                                  

k d

tf idf
k s

, )

,

≤

−

Ω

                       otherwise











 

(2)

As new services are added into a domain, 
its domain ontology will increase. Since a 
domain ontology will keep on evolving, its top 
ranked keywords are divided into sections (i.e., 
square root of Ω ) to decide its amplifier scale. 
For example, considering the top 100 keywords 
for a domain, its top 10 ( 100 ) keywords will 
be put into one section and will amplify their 
tf-idf value by 1.1 (if the coefficient  
β  (β ∈ [ , ]0 1 ) is set to be 1).

Equation (3) shows how we calculate the 
ranking of keyword (k) in domain (d). num(k,d) 
represents the frequency of the keyword (k) in 
the domain ontology (d). It is divided by the 
maximum keyword frequency in the domain 
for normalization purpose. The frequency of 
the keyword is further adjusted by the distribu-
tion of the keyword over the corresponding 
domains in a service repository. α  is a coef-
ficient that can be adjusted in specific domains 
(we will explain using examples below):

kf irf
num k d

num k d

d k d

D

k d
i

− =
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∈{ }
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( , )

( ( , ))

:
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α 1 
+ −( ) ⋅ ( )

( )
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1 α

num k d

num k d
d D i
i

,

,

 

(3)

Consider two distribution scenarios as 
shown below, where the frequencies of a key-
word in two repositories are the same (118). In 
scenario (a), the frequency of the keyword in 
domain d1 is 100, and its frequency in domain 
d2 is 18. In scenario (b), the keyword counts 

Figure	2.	Extensions	to	TF-IDF
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100 times in domain d1, and counts twice in 
nine other domains (d2~d10).

       d1    d2    d3    d4    d5    d6    d7    d8    d9     d10

(a) 100   18

(b) 100    2      2      2      2      22      2       2      2       2

 

If a keyword appears in many domains 
(e.g., scenario (b)), it is more likely that it is 
less important in representing any domain. For 
example, since the ProgrammableWeb is a web 
service registry, many services in its comprising 
domains possess the same keyword “service” 
with high frequency. Such a keyword is insig-
nificant in representing any domain. Therefore, 

the fraction (
:

1−
∈{ }d k d

D
) in Equation (3) 

intends to lower the ranking of such keywords.
Meanwhile, in scenario (a), the keyword 

is likely to represent domain d1 (frequency 100) 
more than domain d2 (frequency 18). In sce-
nario (b), the keyword is likely to represent 
domain d1 (frequency 100) more than domain 
d 2  ( f r e q u e n c y  2 ) .  T h e  f r a c t i o n 

(
,

,
)

num k d

num k d
d D i
i

( )
( )∑ 

�in Equation (3) reflects 

such a consideration.
After calculating the kf irf

k d
−

,
 value of 

each term in a domain, all terms in the domain 

can be sorted. Its order in the ranked list will 
be used in Equation (2).

SVM-EXTENDED 
METHODOLOGY

Based on our extensions to TF-IDF, we propose 
an ontology-empowered SVM methodology for 
service categorization. Figure 3 outlines our 
overall idea; and Figure 4 lists the pseudo-code 
algorithm. Domain ontology, keyword ranking 
as explained in Equation (2), is used in our 
KF-IDF-DF formula to assist in creating the 
vector space (step 8). Generated vector space 
with all normalized service vectors are sent to 
the SVM machine for classification (step 10). 
Afterwards, our KF-IRF formula is used to re-
rank domain-related keywords (steps 11-14).

Different from the traditional waterfall-like 
SVM methodology, as shown in Figure 3, our 
extended SVM methodology does not stop at 
one single round. Instead, we adopt an iterative 
approach to incrementally enhance categoriza-
tion quality. As explained in Equation (2), 
domain-specific keyword ranking can be used 
to highlight the importance of specific keywords 
(value of the attribute in the vector) when build-
ing the vector space. After one iteration, the 
ranking of the keywords in a domain may be 
changed. In other words, the domain knowledge 
may be enriched. Therefore, such enhanced 
domain knowledge can be reapplied to the KF-

Figure	3.	SVM-extended	methodology	for	service	categorization
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IDF-DF and reconstruct the vector space, and 
rerun the entire process for another round (steps 
6-16).

Figure 4 illustrates the pseudo code of the 
extended SVM methodology. The input is a 
collection of services in one specific domain (to-
gether with their related documents); the output 
is enriched domain knowledge in the form of 
a list of ranked keywords. As the initialization 
phase, step 1 reads in all services, extracts all 
terms, normalizes them (e.g., applying Porter 
stemming algorithm (Porter, 1980) for prefix 
and affix removal and Wordnet [http://www.
wordnet.princeton.edu] for solving the synonym 
issue), and adds them to the domain ontology 
(step 1.4) and repository ontology (step 1.5). 
The repository ontology will be used for the 
traditional TF-IDF algorithm to remove insig-
nificant terms (steps 2-5).

In the context of a service repository, 
meanwhile, services are continuously registered 
into domains. Therefore, the corresponding 
domain ontologies have to be incrementally 
built and enriched. As shown in Figure 3, we 
iteratively refine and enrich domain ontology 

(to revise keyword ranking) based on SVM-
based service categorization process. The initial 
keyword ranking is obtained by counting word 
frequency (step 1.4), and removing insignifi-
cant terms through the TF-IDF algorithm (step 
4). Afterwards, each round of SVM-based 
categorization process (steps 6-16) will revise 
the keyword ranking; and the resulting list 
will serve as an input for the next iteration of 
categorization process. The termination criteria 
can be set when the resulting keyword ranking 
remains unchanged (for example, when the top 
50 keywords ranking remains unchanged in 
new iterations).

SERVICE CATEGORIZATION

Recall that our main goal is to facilitate ser-
vice categorization and discovery. Our SVM-
extended approach helps to verify whether a 
service belongs to a domain, i.e., whether an 
API falls into a category. As discussed earlier, 
an API may naturally show features of multiple 
categories. Therefore, we propose a two-phase 

Figure	4.	Ontology-empowered	SVM	approach
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method to verify service categorization, as 
shown in Figure 5.

Two-Phase Service Categorization

In phase 1, we intend to identify the candidate 
domains where a service shows corresponding 
features. In phase 2, we calculate the similarity 
between the service and the candidate domains. 
Using the extended-SVM approach discussed 
in the last section, an API is examined against 
each category and classified as either domain-
relevant or domain-irrelevant. At the end of 
phase 1, a set of candidate categories are ob-
tained for each service.

Although a service may belong to mul-
tiple domains, it may show different levels of 
relevance to different domains. Phase 2 thus 
intends to quantify the relevance of services 
to domains.

Numerous research work has been con-
ducted to calculate the similarity between ser-
vices. For example, Jiang et al. (2011) applied 
the collaborative filtering method to calculate 
similarity between services. In contrast, we cal-
culate similarity between a service and a domain 

to evaluate the relevance of the service to the 
domain. Our key idea is to model a domain as a 
representative vector space, and then transform 
the service-domain relevance problem into a 
similarity computation problem between two 
vector spaces. If the similarity between a service 
and a domain exceeds a predefined threshold, 
the service is considered relate to the domain.

The rationale is that a domain can be rep-
resented by a keyword-oriented vector space 
comprising a collection of significant terms. 
Thus, a domain is modeled as a ranked vector 
of keywords derived from our SVM-extended 
algorithm discussed: DKV

� �����
 (Domain Keyword 

Vector). Our introduced KF-IRF (Equation 3) 
is used to calculate the ranking of a keyword 
in a domain. Note that the model can be refined 
through iterations of verification processes 
driven by comprising services. Without losing 
generality, only top N (e.g., 150) keywords with 
high significance will be considered. As dis-
cussed, each service can be modeled as a term 
vector: SKV

� �����
 (Service Keyword Vector). Cur-

rently we compute cosine similarity between 
DKV
� �����

 and SKV
� �����

 as below. Note that the 

Figure	5.	Two-phase	service	categorization
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relevance values shown in Table 1 are calcu-
lated through this approach.

sim SKV
SKV DKV

DKV
SKV

i j

i j
� �����

� �����
� ������

� ������

� �,
|

( ) = ⋅
����� � ������

i j
DKV| | |⋅

 

(4)

The formula intends to calculate the rel-
evance of a given service i (API) and every 
domain j (category). A threshold can be preset, 
e.g., 0.6. If the resulted relevance exceeds the 
preset threshold, the API is considered relevant 
to the category.

Further Refinements

We further exploit obtained domain knowledge 
to verify and refine service categorization. 
Specially, we leverage service tags and keyword 
rankings. In the context of a service repository, 
tags act important roles to represent the seman-
tics of a service. Therefore, we grant more 
weight to keywords highlighted by service 
providers as tags. For example, if a keyword 
appears in tags, its kf idf df

k s d
− −

, ,
 value can 

be amplified by a predefined scale (e.g., dou-
bled).

Iterative SVM-extended approach leads to a 
ranked keyword list for a domain. Such obtained 
domain knowledge can be used to verify the 
results of our service categorization, from an-
other direction. If a service carries representative 
keywords (i.e., ranked high) in a domain, and 
if such keywords appear multiple times (term 
frequency or TF), it is likely that the service has 
higher relevance to the domain. For example, 
finance and stock are the top two keywords in 
the resulted ranked keyword list from the Finan-
cial category. Consider two services which are 
considered relevant to domain Financial API1 
comprises terms finance (TF: 1) and stock (TF: 
1), and API2 comprises terms finance (TF: 3) 
and stock (TF: 3). Obviously API2 has a closer 
relation to the Financial domain.

We defined the following method to veri-
fy our service categorization results. The weight 

w
i tk,

of term t
k
 in service i’s term vector SKV

i

� �����
 

and the weight w
j tk,

of the t
k
  in domain j’s 

term vector DKV
j

� ������
 are defined as follows:
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where kf irf
j tk

−
,

denotes the kf-irf value of 

term t k N
k
( )≤  in the keyword ranking list of 

domain j ; F
i tk,

 denotes the term frequency of 

term t
k

 in service i; and the purpose of logarithm 
operation is to eliminate the effects of term 
frequency. In other words, the top N keywords 
in domain j will be used to examine the term 
list in service i. If t

k
 does not exist in service 

i, then w
i tk,
= 0 , and w kf irf

j t j tk k, ,
= − , oth-

e r w i s e ,  b o t h  o f  t h e m  e q u a l  t o 
kf irf log F

j t i tk k
− × +

, ,
( )1 .

We will thus obtain a weighted term vector 

WT( )SKV
i

� �����
 of service i defined as:

WT( ) ,
,

SKV t w
i k i tk

� �����
= ( ){ }  

and a weighted term vector WT( )DKV
j

� ������
 of 

domain j defined as:

WT( ) ,
,

DKV t w
j k j tk

� ������
= ( ){ }  

The following formula verifies whether a 
service is relevant to a domain, by calculating 
the cosine similarity between the weighted term 
vectors SKV i

� �����
 and DKV

j

� ������
. Compared to the 

equation (4), here we leverage the representative 
keywords in the domain to examine the results.
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EXPERIMENTS AND 
DISCUSSIONS

We have conducted a series of experiments to 
evaluate our proposed techniques and meth-
odology.

Testbed Establishment and 
Experimental Preparation

We use the publically available Programma-
bleWeb as our testbed. The first step is to grab a 
complete image of the PW repository, meaning 
that we fetch the available metadata of each 
of its comprising Web APIs and mashups. PW 
provides a set of programmable APIs to allow 
users to fetch some descriptive data about their 
registered services: summary, tag, description 
and category information. An APIkey has to be 
applied and granted before using these APIs. 
Upon request, an XML file called Atom feed 
document, will be responded carrying requested 
information. However1, until the end of 2011, 
one Atom feed document can carry information 
for up to 20 services. Therefore, to retrieve 
information for the entire set of over thousands 
of services, we had to send many requests. We 
found that not all services can be extracted 
in this approach. The process was stopped at 
some service pages, whose XML documents 
are broken or because of network overtime.

An alternative is the more labor-intensive 
crawler approach, which goes to every corre-
sponding Web page and extracts relative data 
based on embedded HTML tags. The crawler 
that we adopted is the open-source Heritrix 
(http://crawler.archive.org/). However, crawl-

ing all comprising hierarchical pages from 
such a large-scale website is not a trivial task. 
Its efficiency is much lower than the first PW 
API-based approach. As a result, we decided 
to adopt a hybrid approach. PW API method is 
adopted to retrieve as much as possible service 
metadata. When exceptions occur, the crawler 
method is used to fetch the corresponding 
metadata. Figure 6 lists the pseudo code of 
constructing an “image” of the PW site.

The key concern is the efficiency, since 
crawler takes much longer time to retrieve the 
metadata of a service than using PW APIs. We 
leveraged PW API to retrieve API metadata in 
pages with a capacity of 20 in default (Step 2). 
If an exception occurs when retrieving a page, 
we tuned the page capacity to 1 to fetch the rest 
services in the original page (Steps 8-13). A 
stack structure was used to store services that 
cannot be retrieved using PW API approach 
(Steps 7, 12). Then for each block in the stack 
comprising continuous service ids, the crawler 
was invoked to retrieve the corresponding 
service metadata, which will be integrated with 
the data retrieved through the PW API approach 
(Steps 14-18).

We implemented an SVM Web service 
leveraging the LIBSVM (Chang and Lin 2011), 
a library with Java APIs for supporting SVM-
based classification and regression analysis.

All of our algorithms and experiments 
are developed in Java, and conducted on PCs 
with Intel Core 2 CPU T7300, @2 GHz and 2 
GB main memory, running the Windows XP 
operating system.

Domain Ontology Construction

We designed experiments to evaluate the ef-
fectiveness of building domain ontology using 
our method. The first step is to build a base line. 
From each of the 68 preset PW categories, we 
wrote code to identify all terms in the forms 
of verb and noun, and then rank all of them by 
their frequency in the domain. Then focusing on 
the top 100 terms, three graduate/undergradu-
ate students were asked to manually adjust the 
rankings of the terms and sort them by their 
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relevance to the domain name, according to 
their understanding and common sense.

Based on the constructed baseline of key-
word ranking, we ran three techniques (TF-IDF, 
MI, and our KF-IRF) over the entire Program-
mableWeb testbed. According to Church and 
Hanks (1990), the Mutual Information (MI) 
between a term t and category c is defined as:

I t c p e e
p e e

p e p ee e
t c

t c

t ct c

, ( , ) log
( , )

( ) ( ){ , } { , }

( ) =
∈ ∈
∑ ∑
0 1 0 1

 

Each method will result in a ranked 
keyword list. Table 2 lists the top 15 ranked 
keywords in the domain Travel, using three 
methods TF-IDF, MI, and KF-IRF, respectively. 
It is shown that our method (KF-IRF) performs 
slightly better than the other two methods. Some 
top keywords resulted from MI and TF-IDF are 
not relative to the domain, such as the keyword 
“availability” listed by MI, and the keywords 
“search” and “property” listed by TF-IDF.

To precisely compare the effectiveness of 
generating domain ontology using the three 
methods, we calculate the standard deviation 
for each method as follows:

d test base
rank test rank test

i

n

test i base i
,

( ) /
( ) =

( )− ( )



=∑ 1

γ 
2

n
� 

where base denotes the normalized ranked 
keyword list generated by domain experts; test 
denotes the ranked keyword list generated by 
a categorization method; γ  is a normalization 
factor.

The basic idea is to measure the diversity 
of how much variation between the ranking of 
each keyword in one approach from that in the 
baseline. The standard deviation of one method 
checks the dispersion of all comprising key-
words. A lower standard deviation indicates 
that the ranking method tends to be more ac-
curate. Because domain ontology has to be 
incrementally built, the ranking of a specific 
keyword in a domain is not absolute. Meanwhile, 

Figure	6.	Pseudo	code	of	constructing	PW	testbed
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our baseline ranking is also depended on human 
decisions. Therefore, we use a normalization 
factor to eliminate such random factors. For 
example, a keyword ranked as second or third 
is considered no difference. When setting γ = 5
, we obtained the effectiveness comparison 
among the three approaches, by considering 
the top 50 keywords and top 100 keywords, 
respectively (on the left and right). As shown 
in Figure 7, our method shows the lowest stan-
dard deviation.

As discussed, our domain knowledge-
empowered SVM methodology adopts itera-
tions to incrementally reach better service 
categorization accuracy. We thus studied the 
convergence rate of our approach. We set the 
termination criterion as the standard deviation 
remains unchanged in two iterations (without 
losing much accuracy, we consider the top 100 
keywords). Figure 8 summarizes our experi-
mental results over the category Travel. Using 
different scales of testing sets including 1000, 
3000, 5000, 7190 services, at most five itera-

tions are needed to get the best categorization 
results.

Accuracy Analysis

We designed a set of experiments to compare the 
service categorization accuracy between using 
our ontology-empowered SVM methodology 
and directly applying the SVM methodology. 
We adopted three indexes, Precision,	Recall, 
and F-measure, to evaluate the performance of 
service categorization. Precision is the fraction 
of the services that are correctly considered 
as relevant to the target domain; Recall is the 
fraction of the relevant services that has been 
correctly categorized into the target domain; 
F-measure is a weighted average of Precision 
and Recall. Precision,	Recall,	and	F-measure 
are formally defined as follows.

Precision
C

C

R = ;  

Table	2.	Top	15	ranked	keywords	

TF-IDF MI KF-IRF

Travel Travel Travel

Booking Booking Booking

Hotel Hotel Hotel

Flight Flight Flight

Reservation Reservation Trip

Trip Airline reservation

Rental Vacation Vacation

Vacation Airport Rental

Airport Trip Airport

Airline Rental Airline

Search Destination Accommodation

Tours Accommodation Tours

Accommodation Traveler Destination

Guide Transportation Transit

Property Availability Traveler
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Recall
C

R

R = ;  

F measure
Precision Recall

Precision Recall
− =

×
+

2.  

where,

• C represents the set of services that are 
categorized as relevant to a domain; |C| 
denotes the number of services in C.

• R represents the set services that should be 
categorized as relevant; |R| indicates the 
number of services in R.

• C
R

 represents the set of services as the 
intersection of the sets R and C; |C

R
| in-

dicates the number of services in C
R

.

We applied our approach to evaluate all 
APIs in ProgrammableWeb against the 68 preset 
categories. The training set for each category 
comprised two parts: domain-relevant set and 
domain-irrelevant set. 80% of the APIs listed 

Figure	7.	Comparison	of	keyword	ranking

Figure	8.	Comparison	between	different	iterations
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in the category by ProgrammableWeb formed 
the domain-relevant set; the same amount of 
APIs randomly selected from other categories 
formed the domain-irrelevant set. Table 3 lists 
the categories that have more than 100 APIs. As 
we discussed earlier, our approach also relies 
on the scale of training dataset. Therefore, we 
only examined the categories that can provide 
sufficient training sets.

Recall of most categories is 100 and the 
average recall reaches 99.78. For the precision 
index, the average reaches 82.07. However, the 
precision of the “Search” category is low (57.14, 
highlighted in Table 3). Our investigation found 
that the category name Search appears in quite 
a number of APIs, showing that the APIs provide 
the ability of information retrieval. That is why 
some APIs from other domains were categorized 

Table	3.	Evaluation	of	categorization	accuracy	

Domain
Single-class SVM Knowledge-Empowered SVM

Precision 
(%)

Recall 
(%)

f-Measure 
(%)

Precision 
(%)

Recall 
(%)

F-Measure 
(%)

Advertising 69.66 100 82.12 84.97 100 91.87

Education 67.66 100 80.71 84.96 100 91.86

Email 66.51 100 79.89 83.88 100 91.23

Enterprise 62.25 99.65 76.63 73.28 100 84.58

Financial 82.45 99.29 90.09 77.90 99.29 87.30

Games 74.07 99.00 84.74 84.74 99.00 91.32

Government 81.49 100 89.80 91.6 100 95.61

Internet 63.22 99.14 77.21 83.30 99.78 90.80

Mapping 59.90 99.62 74.82 75.64 100 86.13

Messaging 70.60 100 82.77 86.36 100 92.68

Music 88.04 100 93.64 93.10 100 96.42

Payment 75 100 85.71 86.53 100 92.78

Photos 71.18 99.40 82.96 81.95 99.40 89.83

Reference 55.60 99.63 71.37 83.28 100 90.87

Science 73.79 100 84.92 91.81 99.53 95.51

Search 35.81 97.52 52.39 57.14 99.00 72.46

Security 60.93 97.76 75.07 90.41 98.50 94.28

Shopping 69.02 100 81.67 86.98 100 93.04

Social 57.54 99.26 72.85 75.65 100 86.13

Telephony 51.10 99.56 67.54 72.95 100 84.36

Tools 54.18 99.78 70.23 83.74 100 91.15

Transportation 66.25 100 79.69 94.64 100 97.24

Travel 73.89 99.33 84.74 89.34 100 94.37

Utility 42.10 96.55 58.63 64.08 100 78.11

Video 66.41 100 79.81 73.64 100 84.81

Average 65.55 99.42 78.40 82.07 99.78 89.79
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into the Search domain. Such findings further 
prove that some APIs registered at the Program-
mableWeb naturally belong to multiple do-
mains.

To evaluate the effectiveness of our domain 
knowledge-empowered service categorization 
approach, we applied the traditional SVM 
method to redo the experiments over the services 
on ProgrammableWeb. The results are listed 
in Table 3 as well. It is shown that our method 
exceeds the traditional SVM method in each of 
the categories comprising more than 100 APIs.

We further conducted experiments to 
evaluate the efficiency of our approach facing 
different scales of testing sets. We compared the 
precision/recall values of using our methodol-
ogy with those of using the traditional SVM 
methodology, for categorizing travel-related 
services. The same experiments were conducted 

over difference scales of testing sets containing 
different number of services: 1000, 3000, 5000, 
and 7190. As explained, the experiments were 
repeated until the termination criterion is met 
(the precision rate remains). Table 4 summarizes 
our findings.

As shown in Table 4, our methodology 
outperforms the traditional SVM in both preci-
sion and recall indexes. For the Recall index, 
as long as the scale of the testing set becomes 
large enough (more than 1000 services), our 
methodology always reaches higher than 98.03, 
meaning that our method is good at identifying 
all services containing significant domain-re-
lated keywords. For the Precision index, our 
method outperforms the traditional SVM even 
from the first iteration, and terminates quickly 
(no more than 5 times for the test set containing 
7190 services). In general, using our method, 

Table	4.	Categorization	accuracy	comparisons	

                                                                              #test 
Test# 1000 3000 5000 7190

Traditional SVM

precision 95.54 82.87 74.62 73.89

recall 99.33 99.33 99.33 99.33

F-measure 97.40 90.36 85.27 84.74

Knowledge-empow-
ered SVM

Iteration1

precision 100 96.77 96.15 94.33

recall 99.33 99.33 99.33 99.33

F-measure 99.66 98.03 97.71 96.77

Iteration2

precision 99.33 96.77 96.17 94.37

recall 99.33 99.33 100 100

F-measure 99.33 98.03 98.05 97.10

Iteration3

precision 99.33

X

96.17 86.78

recall 99.33 100 100

F-measure 99.33 98.05 92.92

Iteration4

precision

X X X

86.28

recall 100

F-measure 92.63

Iteration5

precision

X X X

86.28

recall 100

F-measure 92.63

** “X” means that this iteration does not exist
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values of both precision and recall indexes 
become better in newer iterations, until remain-
ing unchanged when iterations stop.

In our experiments, we used the set of 
services originally categorized by the Pro-
grammableWeb as the reference points. When 
examining the other services that are categorized 
as travel-related by our methodology, we found 
that their descriptions do contain high-rank 
keywords according to our constructed domain 
ontology. For example, the service named “Ya-
hoo Traffic” is categorized as “others” on the 
PW. However, its descriptions contain several 
high-rank travel-related keywords including: 
traffic (7:15), transit (1:5), route (1:21). A 
number pair (X:Y) represents the appearance 
frequency of the keyword in the service de-
scriptions and the ranking of the keyword in 
the domain, respectively.

Such findings prove that our methodology 
has the ability to: 1) justify existing categoriza-
tion of services; 2) identify services that belong 
to multiple domains; and 3) find services that 
should be categorized into different domains. 
For the second and third types of services, we 
choose to add tags to them, so that such infor-
mation may support further services discovery.

Validation

We have collected all API data of Program-
mableWeb in September 2011, and December 
2011, separately. We found that 29 APIs were 
moved from their original categories to different 
categories. We tested whether our classifica-
tion method can support these changes. We 
also applied the traditional SVM method to 
conduct the same experiments. The results are 
listed in Table 5.

Among all APIs that changed their catego-
ries, three APIs are exceptions. Two APIs 
(openBmap, OpenGeoTracker) were moved 
from the Mapping category to the Other cate-
gory by ProgrammableWeb, which means that 
their category information was removed. An 
API (43Things) is difficult to be automatically 
classified into any category Goal	Setting, since 

there are only four APIs in the category. For 
the other 26 APIs, our method supported 16 
cases of API re-categorization and suggested 
the same new categorizations as the manual 
process. For the other 10 APIs, according to 
the approach, our method can provide their 
similarity to the new categories, ranging from 
0.09 to 0.39. As shown in Table 5, the tradi-
tional single-class SVM classification sup-
ported 14 API re-categorization. Two cases 
supported by our approach but not the tradi-
tional SVM approach are highlighted in Table 
5. This study again proved the effectiveness of 
our approach.

Performance

We evaluated the performance of our method. 
Here we describe our results for the categories 
that have more than 100 APIs Using the same 
training set as mentioned, we repeated the ex-
periments with different scales of testing sets 
including 1000, 3000, 5000, and 7190 (all) 
APIs. In each experiment, we recorded the 
average execution time of service classifica-
tion, as summarized in Figure 9. The average 
execution time ranges from 79 to 174 seconds. 
The largest execution time is 424 seconds. This 
overhead is acceptable because service categori-
zation only needs to be conducted periodically. 
Furthermore, our experiments evaluated every 
iteration (with different testing sets) separately, 
without considering the domain ontology built 
from smaller scale of testing data. In reality, 
domain ontology will be carried on to start a 
new service categorization process. As a result, 
the number of iteration may be decreased and 
the execution time will be shorter.

Furthermore, we examined the number of 
iterations that is needed to finish service catego-
rizations. Again we focus on the 25 categories 
containing more than 100 APIs. For each cat-
egory, the testing set was set to be 7190 (all) 
APIs. As shown in Figure 10, the average it-
eration number is 3.8. Only two domains iter-
ated more than 5 times.
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CONCLUSION

The unique structural feature of service re-
positories and their hidden domain knowledge 
inspire us in extending the traditional SVM 
methodology to enhance the effectiveness and 

efficiency of automatic service categorization. 
Our proposed technique is particularly valuable 
in building service search engines oriented to 
small- to middle-scale service repositories. It 
will also help services discovery and recom-
mendations.

Table	5.	Validation	results	

API Name Original Category New Category Our 
Method

SVM

Socialight Mapping Social √ √

Spot2be Mapping Social √ √

Veniu Mapping Social √ √

waldstat Mapping Social √ √

Gnip Internet Social √ √

Safe2pee Mapping Search √ √

Touch Local Mapping Search √ √

Unlock Mapping Search √ √

SingTelinSingBusiness Search Telephony Search √ √

ShowMyIP Mapping Internet √ √

VodoModo Mapping Video √ √

ViaMichelin Mapping Travel √ √

YourStreet Mapping News √ √

Strike Iron Tax Service Other Reference √ √

eBay Shopping Search √ ×

USGS Gazetteer Query Government Mapping √ ×

43Things Other Goal Setting × ×

openBmap Mapping Other × ×

OpenGeoTracker Mapping Other × ×

Tellmewhere Mapping Recommendations × ×

mite Utility Office × ×

Prototype GeoIP Mapping Internet × ×

Quova Mapping Internet × ×

Where2GetIt Geospatial Mapping Tools × ×

Unified Software AddressVal Mapping Tools × ×

Tixik Mapping Reference × ×

SitOrSquat Mapping Search × ×

Wigle Mapping Search × ×

Where2GetIt SlippyMap Mapping Search × ×
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As the first step, we focus on one feature 
of domain knowledge: keyword ranking that 
indicates the significance of a term to represent 
a domain. If a service is tagged, manually or 
systematically, by significant terms of a domain, 
it is more likely that the service belongs to the 
domain. Consequently, a service may also rep-
resent multiple overlapped domains. Semantic 

relationships between terms may further help 
to extract domain knowledge. We will study 
this topic in our future research.

We plan to continue our research in the 
following directions. First, we will study the 
effectiveness and efficiency of our approach 
on other popular service repositories such as 
Tech-News and TechFreaks. Second, we will 

Figure	9.	Performance	evaluation

Figure	10.	Iteration	numbers



64   International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

encapsulate our technique and develop a Web 
service to monitor and categorize services on 
the ProgrammableWeb. Third, we will explore 
to enhance existing service repository-oriented 
service search engine.
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ENDNOTES
1 This issue has been resolved by Programma-

bleWeb in 2012. However, the approach how 
we graph an image of metadata of a service 
repository can be applied to other resources 
without full API support.
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