
International Journal of Web Services Research, 9(3), 43-66, July-September 2012 43

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Enriched	Domain	Knowledge,	Mashup	Repository,	Open	Service,	ProgrammableWeb,	Service	
Categorization,	Support	Vector	Machine

INTRODUCTION

The ultimate goal of cloud computing is to
enable everything as a service (XaaS) (NIST,
2011), where Software as a Service (SaaS) is
one core objective. While software being pub-
lished as universally accessible Web services,

users can leverage existing services and quickly
compose new value-added business processes
and services. However, as cloud has become
an unprecedented driving factor to encourage
people to publish and share software as services,
how to effectively and efficiently discover in-
terested services from a “cloud” of resources
remains a big challenge.

Leveraging Incrementally
Enriched Domain Knowledge to
Enhance Service Categorization

Jia	Zhang,	Carnegie	Mellon	University,	Silicon	Valley,	USA

Jian	Wang,	State	Key	Lab	of	Software	Engineering,	Computer	School,	Wuhan	University,	
China

Patrick	C.K.	Hung,	University	of	Ontario	Institute	of	Technology,	Canada

Zheng	Li,	State	Key	Lab	of	Software	Engineering,	Computer	School,	Wuhan	University,	China

Neng	Zhang,	State	Key	Lab	of	Software	Engineering,	Computer	School,	Wuhan	University,	
China

Keqing	He,	State	Key	Lab	of	Software	Engineering,	Computer	School,	Wuhan	University,	
China

ABSTRACT
This	 paper	 reports	 the	 authors’	 study	 over	 an	 open	 service	 and	mashup	 repository,	ProgrammableWeb,	
which	groups	stored	services	into	predefined	categories.	Leveraging	such	a	unique	structural	feature	and	
hidden	domain	knowledge	of	the	service	repository,	they	extend	the	Support	Vector	Machine	(SVM)-based	
text	classification	technique	to	enhance	service-oriented	categorization.	An	iterative	approach	is	presented	
to	automatically	verify	and	adjust	service	categorization,	which	will	incrementally	enrich	domain	ontology	
and	in	turn	enhance	the	accuracy	of	service	categorization.

DOI: 10.4018/jwsr.2012070103

44 International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

One major technique is to establish service
registries (Zhang et al., 2007) as centralized
“service yellow pages” to help users find inter-
ested services. Earlier Universal Description,
Discovery, and Integration (UDDI) registries are
going out of date, however. Two major reasons
are their tight binding to SOAP/WSDL services
and their over standardization. In recent years,
REpresentational State Transfer (REST) ser-
vice, a light-weight HTTP Request/Response-
based service style, has rapidly emerged and
caught significant momentum (Pautasso et al.,
2008). Thus, many non-UDDI service regis-
tries have been developed. Among them, The
ProgrammableWeb (PW, http://www.program-
mableweb.com, acquired by Alcatel-Lucent in
2010) has become a popular one.

Without adopting the heavy UDDI standard,
ProgrammableWeb provides a repository that
allows people to publish reusable Web services
in various formats (protocols including REST
and SOAP), called Web APIs. Meanwhile, PW
allows people to publish API-based applica-
tions, called mashups. A mashup represents a
value-added business process leveraging one
or more existing APIs published in PW. Such
a light-weight service repository has attracted
extensive attention. Since its inception in late
2005, the number of services published at PW
has increased rapidly. Up to September 7,
2012, 7190 services and 6,763 mashups have
been published at PW. Among the published
services, 70% are REST services, 21% are
SOAP services, 5% are JavaScript services,
and 2% are XML-RPC services. Since APIs
at PW represent reusable service components,
throughout this paper, we will use the terms
API and service interchangeably.

As the number of services accumulates at
PW, it is important to facilitate users in query-
ing and finding interested services (Gomadam
et al., 2008). However, the current querying
power at PW is limited. At publishing time,
service providers are allowed to attach some
user-defined name tags. Unlike UDDI that
intends to regulate a comprehensive ontology
system, ProgrammableWeb adopts a straight-
forward strategy. Every service is manually

categorized into one of a preset list of domains
(68 domains up to September 7, 2012) (Arab-
shian et al., 2012). The assigned domain name
and provider-defined tags associated with the
service are combined to support keyword-based
search function.

Such an API search mechanism may cause
confusion and decrease search accuracy. First,
the manual process of service categorization
may not be accurate. As a matter of fact, API
“ShowMyIP” was originally classified in do-
main “Mapping”; and was moved to domain
“Internet” later. In the metadata of the API, its
description, summary and tags contain some
representative keywords of domain “Internet”
such as “IP” and “Internet.” Second, it may be
difficult to decide one single domain for some
APIs, because some predefined domains over-
lap with each other conceptually. For example,
domains Travel, Transportation, and Weather
share many common concepts. For another
example, the aforementioned API “ShowMyIP”
does relate to the category “Mapping” in ad-
dition to the category of “Internet.” Third, PW
presets a special domain named “Other” and a
significant number of services are found left in
the category. Currently, 199 services are listed
in the category of “Other,” which is the top 14th
category with the most number of services (over
the entire 68 preset domains). Fourth, user-
defined tags may be ad	hoc and inconsistent,
and sometimes lack of tag (Gomadam et al.,
2008), cannot effectively help users find their
interested services.

Table 1 shows some motivating examples.
The second column shows the category name
assigned to the Web API (whose name is in the
first column) by ProgrammableWeb. However,
as shown in the third column, our study indicates
that these Web APIs should belong to several
categories (domains). The names of the Web
APIs even imply such cross-relationships. For
example, users should be able to find the API
“BestParking” from the Travel, Transportation,
or Mapping categories. (The numbers represent
the similarity between a Web API to a corre-
sponding category. For another example, the
API “StrikeIron Address Distance” is listed in

International Journal of Web Services Research, 9(3), 43-66, July-September 2012 45

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the category of “Other.” However, our study
of the descriptions of the API revealed that
it should be listed in three categories: Travel,
Transportation, and Mapping. The details of
how to obtain such similarity will be discussed.)

Therefore, there exists a need for existing
non-UDDI service repositories to enhance their
service categorization accuracy, and in turn
enhance their query and search ability. While
such an ability will attract more service users
to visit the repository, it will also attract more
service providers to publish their services at
the site.

This paper reports our approach that adapts
the Support Vector Machine (SVM) technique
to enhance service categorization on service
repositories. While an SVM engine being con-
structed as a black-box service, we propose a
pair of customizable input and output functions

to increase its categorization accuracy based
on incrementally enriched and refined domain
knowledge. Our extended SVM technique has
three major contributions: one is to verify and
refine existing author/user-centered service
categorization; second is to enrich domain
ontology; third is to support in automatically
annotating (tagging) services. Our experimental
results show that our approach surpasses the
tag-based search approach used by Program-
mableWeb, as well as directly applying text
document classification approaches to service
categorization.

The remainder of the paper is organized as
follows. First, we discuss related work. Then, we
introduce our extensions to SVM. Afterwards,
we present our ontology-empowered SVM
technique, and how it can be used to support
service categorization, respectively. Followed

Table	1.	Motivating	examples	

API Name Original Category Categories Related

BestParking Travel Travel (0.9261)
Transportation (0.2732)
Mapping (0.4139)

RunwayFinder Travel Travel (0.4864)
Transportation(0.1715)
Mapping (0.8629)

Trazzler Travel Travel (0.9319)
Transportation (0.2644)
Mapping (0.6502)

TripTracker Travel Travel (0.9327)
Transportation (0.2703)
Mapping (0.8807)

Urban Mapping Mass Transit Proximity Travel Travel (0.5158)
Transportation (0.8632)
Mapping (0.4099)

Mapnificent Transportation Travel (0.9337)
Transportation (0.6907)
Mapping (0.7003)

NAC Real-time Routing Mapping Travel (0.9289)
Transportation (0.2755)
Mapping (0.7446)

StrikeIron Address Distance Other Travel (0.5586)
Transportation (0.2564)
Mapping (0.5805)

46 International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

by a presentation experimental settings and
preliminary results and analysis. Finally, we
then draw conclusions.

RELATED WORK

The work presented in this paper will further
advance the research in semantics-empowered
Web services discovery. Although the literature
has witnessed a rich set of research results in
the area, most of them are oriented to SOAP
services supported by a formal service de-
scription model embedded in WSDL. OWL-S
(Coalition, 2004) describes services in terms
of profile, process, and grounding. SAWSDL
(Kopecky et al., 2007) proposes to annotate
WSDL components such as inputs/outputs
with references to ontologies. WSMO (Vitvar
et al., 2007) advocates to model Web services
using four major elements of ontologies, Web
services, goals, and mediators. Paolucci et al.
(2002) map DAML-S service profiles to UDDI
records; Sivashanmugam et al. (2004) map se-
mantic Web service descriptions in SAWSDL to
UDDI. Dong et al. (2004) present a clustering
method to cluster parameters present in inputs
and outputs of WSDL operations. Hess and
Kushmerick (2003) apply Naive Bayes and
SVM machine learning methods to categorize
WSDL files in manually defined hierarchies.
In contrast, this research accumulates semantic
data from fragmental descriptive elements from
various types of services not limited to SOAP
services.

Most of semantic services discovery re-
search performs profile-based service signature
(I/O) matching (Klusch et al., 2006). OWLS-
MX (Klusch et al., 2006) and WSMO-MX
(Klusch & Kaufer 2009) propose to combine
logic-based reasoning and syntactic concept
similarity computations in OWL-S. Sbodio et al.
(2010) propose to use SPARQL as a formal lan-
guage to describe the pre- and post-conditions
of services. Junghans et al. (2010) propose a
practical formalism to describe functionalities

and service requests. In contrast, we focus on
enriching domain ontology and leveraging it
to classify services.

Since the ad	 hoc standard Web Service
Descriptions Language (WSDL) does not
carry semantic information, automatic service
discovery remains a challenge. As one important
aspect, service categorization research, i.e., ser-
vice classification, aims to explore a mechanism
to automatically verify the domain(s) to which
a service belongs. Such research efforts gener-
ally follow two directions. One direction is to
extend WSDL with abilities to carry semantic
information of services. Leveraging semantic
web technologies, a number of languages have
been developed, including OWL-S (Martin et
al., 2007), WSDL-S (Akkiraju et al., 2005), and
WSMO (Klusch & Kaufer, 2009).

The other direction focuses on eliciting
semantic knowledge from textual description
documents associated with Web services, lever-
aging the Information Retrieval (IR) techniques.
Typical strategy is to extract features from
Web service description documents using IR
methods such as text retrieval, vector model
and clustering. However, few of the existing
efforts address the issue of high dimensional-
ity of feature space. If Web service description
documents carry a large number of different
terms, which are treated as features by IR clas-
sifiers, a large feature space may lead to low
performance and low accuracy.

Some researchers exploit the structure of
WSDL documents to categorize Web services.
For example, our previous work (Zhang et al.,
2011) and Liu et al. (2011) leverage bipartite
graphs to calculate similarity between Web
services based on WSDL documents; Patil et
al. (2004) adopt a schemamatching similar-
ity matching method. In contrast, our work
presented in this paper focuses on leveraging
domain knowledge to highlight significant
dimensions of feature space.

The IR community has created a wealth of
clustering algorithms and techniques (Yang &
Liu, 1999). In contrast to these general-purpose

International Journal of Web Services Research, 9(3), 43-66, July-September 2012 47

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

text categorization technologies, our work aims
at services discovery and targeting on service
repositories with embedded ontological infor-
mation, which can be exploited to facilitate
service categorization when the scale of the
training data set is not large enough.

As REST services become popular, many
researchers have started to explore how to add
semantics to REST services. SA-REST (Sheth
et al., 2007) semantically annotates REST ser-
vices by adding annotations to Web pages that
describe the services. Semantic Bridge for Web
Services (SBWS) (Battle and Benson 2008)
provides custom annotations to WADL (Web
Application Description Language) (Hadley,
2009) documents. However, these annotate
processes are difficult and costly (Lee & Kim,
2011).

Generic search engines such as Google can
help discover Web services (APIs) and mashups
through keywords. The ProgrammableWeb site
leverages Google search facility to provide tag-
based search function. Studies have indicated
the limitation of keyword-based search method
without considering semantic data (Lee & Kim,
2011). In contrast, we propose an approach to
verify and refine user tags to enhance service
and mashup discovery.

Gomadam et al. (2008) adopted the tra-
ditional term vector similarity approach and
faceted classification (Ranganathan, 1962) to
categorize the Web APIs at ProgrammableWeb.
A term vector and a tag vector are built for each
domain. Each API is compared against the term
vector and the tag vector of each domain us-
ing the cosine similarity approach. They also
present a PageRank-inspired service utilization
(serviut) approach to rank services in a category.
In contrast, our approach proposes to leverage
domain knowledge to enhance traditional SVM
(a popular text categorization method) in the
context of service categorization. In addition,
we leverage their serviut rank method as part
of our service recommendation criteria.

Domain-specific ontologies are normally
developed manually through the collaboration
of highly skilled domain experts and ontology
engineers (Lee & Kim, 2011). A number of

works have been reported on automatic acqui-
sition of semantic information to build ontol-
ogy. Sabou et al. (2005b) present an approach
that extracts domain ontologies from textual
documents associated with Web services. Segev
and Zheng (2010) propose an ontology boot-
strapping method that automatically generates
concepts and their relations in a domain from
WSDL files. Our earlier research presents an
approach that automatically extract semantic
information from WSDL files, based on the
hypothesis that service developers usually fol-
low naming convention (Zhang et al., 2011).
Lee and Kim (2011) use Sun’s WADL (Hadley,
2009) (SUN) to describe syntactical informa-
tion of REST services, and study how to enable
similarity search over RESTful services based
on their syntactic and semantic descriptions. A
learning ontology method is proposed to seman-
tically describe REST services, which groups
parameter names of services into semantically
meaningful concepts and capture relationships
between words contained in a parameter name.
In contrast, we focus on incrementally build
domain concepts and their relationships from
fragmental semantic data.

Liu et al. (2011) derive semantic relations
between services based on their associated
tags, and consequently build a directed service
graph to guide potential service composition. In
contrast, we categorize services based on their
associated semantic information including de-
scriptions, tags, and categorization information.

Zhang and Li introduce the concept of
service cluster (Zhang & Li, 2004) to represent
a collection of available services provided by
multiple service providers to perform a specific
common function. Here we borrow the concept
and extend the SVM technique to help verify
and justify service clusters.

EXTENDED SVM TECHNIQUE

Existing service categorization usually adopts
Information Retrieval (IR) similarity models
such as vector space models, probabilistic
models, and information theory-based mod-

48 International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

els (Dasgupta et al., 2011). Their underlying
technique is semantic similarity measurement
between services, either based on keywords
(Corella & Castells, 2006) or on ontology
(Bianchini et al., 2006). The former method
uses the Term Frequency – Inverse Document
Frequency (TF-IDF) (Jones, 1972) technique
to build a vector space; the latter leverages
taxonomy, information content (IC), or con-
cept property to calculate similarity between
services. However, two reasons make service
categorization challenging if we directly ap-
ply these methods. First, services are usually
published without comprehensive descriptions.
For example, we can only find on Program-
mableWeb service information from its name,
domain name, user-specified tags, summary,
and short description. Second, it is known that
acquisition of domain ontologies is difficult
and costly (Sabou et al., 2005a; Lee & Kim,
2011). Therefore, this research aims to address
these challenges by exploring an approach that
incrementally establishes domain knowledge,
and leverages such knowledge to automatically
verify and enhance service categorization.

Applying SVM Technique

It is known that the Support Vector Machine
(SVM) method outperforms (accuracy of
classification) other text categorization meth-
ods (Yang & Liu, 1999), especially when the
number of dimensions of the documents under
consideration is significant. Verifying and jus-
tifying the categorization of services may not
be a trivial task, since service descriptions are
free text documents that may comprise various
terms. Therefore, it is suitable to apply the SVM
method for service categorization.

We construct a SVM model by formalizing
service classification as an optimization prob-
lem (Boser et al., 1992). Given a training set
of pairs (,)x y

i i
, i S

T
∈ where x S

i
n∈ repre-

senting each service in the form of an n-dimen-
sion vector, and y

i
∈ −{ , }1 1 indicating

whether a service belongs to the domain or not.
The SVM model aims to find a solution to:

min()
, ,

| |

w b

T

i

S

i
w w C

T

ξ
ξ

1

2 1

+
=
∑

subject to:

y w x
i i i i

T b∅ ξ ξ()+() ≥ − ≥1 0, .

Training vectors xi are mapped into a
higher dimensional space by the function ∅ .
SVM will find a linear separating hyperplane
with the maximal margin in the higher dimen-
sional space. C > 0 is a penalty parameter of
the error service.

We construct a single-class SVM aiming
to find a line to split the domain relevance and
domain irrelevance in high-dimensional vectors
(Yang & Liu, 1999). As we discussed earlier,
a service may fit in one domain the best while
naturally relating to multiple domains. Our
goal is to find out all such relative domains, as
well as the similarity between one service and
each related domain (details will be discussed
later). That is why we decided to use the single-
class SVM.

Figure 1 shows the high-level workflow
of how we directly apply the SVM approach
to conduct service categorization. The input
of the process is a repository of services; the
output is the classified services and the ranking
of the domain keywords (domain ontology).
The workflow comprises three phases. First,
a vector space is constructed from all input
services based on the TF-IDF formula. Second,
a SVM classification model is built based on
a selected training service set, and then runs
over the entire service repository (i.e., testing
service set) to classify each comprising service
as either domain-relevant or domain-irrelevant.
Third, the mutual information (MI) value of
each keyword in the testing set is calculated

International Journal of Web Services Research, 9(3), 43-66, July-September 2012 49

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

to represent the ranking of the keyword in the
domain.

Issues and Strategy

Applying the above approach to the service
repository ProgrammableWeb, we found that
the categorization results are not satisfactory in
a number of domains. Analyzing the reasons, we
identified several significant issues. Successful
training of the SVM classification model heavily
depends on the scale and the precision of the
training set. A service repository, however, usu-
ally has an unbalanced distribution of services
in different domains. For example, the Internet
domain contains 472 Web APIs, and the Social
domain contains 407 APIs. However, some
domains contain a smaller number of services.
For example, the Dictionary category contains
14 Web APIs, and the Politics domain contains
5 APIs. Such small training sets cannot train a
good SVM model. Meanwhile, ad	hoc service
categorization decided by ProgrammableWeb
may not always be accurate (Arabshian et al.,
2012).

After carefully examining Program-
mableWeb, we noticed one unique feature.
The services registered at the repository are
organized into 68 separate domains. In other
words, services categorized within the same
domain should share the same domain ontol-
ogy. Thus, we made an important hypothesis:
domain	 ontology	may	 help	 build	 a	more	 in-
structive	vector	space	as	the	input	to	the	SVM,
so as to enhance the quality of the training set
and in turn enhance categorization accuracy.

The supporting assumption is that, descriptive
information associated with published services
in a domain represents ontology and domain
knowledge of the domain. Such information
includes service name, domain name, summary,
tags, and short description. For SOAP services,
descriptive information also includes operation
names in WSDL files, usually following naming
conventions and implying semantic intension
(Zhang et al., 2011).

Our idea is to incrementally build knowl-
edge for each domain based on information
derived from its comprised registered services.
We thus enhanced the algorithm used to measure
keyword-based service similarity, i.e., TF-IDF,
which does not take into account features in
corresponding domain knowledge. When TF-
IDF calculates the significance of a term in a
document, it does not consider the significance
of the term in the corresponding domain.

Enhancement to TF-IDF

Figure 2 illustrates our extensions to the tra-
ditional TF-IDF (Jones, 1972). TF-IDF aims
to calculate the weight (wj,i) of every term (tj,i)
inside of document (di). It indicates the impor-
tance of the term, against the entire document
repository. Equation (1) shows that, the more
documents in which a term appears, the less
important the term is.

tf idf w tf idf
c d

d t d
j i j i j

j i

k k i j iC

− = × = ×
+ ∈

() log
{ }

{ : }
, ,

,

, ,
Σ 1

(1)

Figure	1.	Directly	applying	SVM	technique

50 International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

In contrast to TF-IDF that measures be-
tween one document and corpus (the entire set
of documents), we break TF-IDF into two parts.
As shown in Figure 2, two new concepts are
introduced: (1) keyword frequency – inverse
document frequency – domain frequency (KF-
IDF-DF) and (2) keyword frequency – inverse
repository frequency (KF-IRF). KF-IDF-DF
intends to measure between a service and its
corresponding domain; while KF-IRF intends
to measure between a domain and the entire
service repository.

Note that keywords here represent terms
that are significant enough to facilitate service
categorization. This also explains our rationale
of using keywords instead of all terms: keywords
will decide service categorization. In the context
of ProgrammableWeb, as well as similar tag-
empowered service repositories, all tags are
considered as highlighted keywords – important
terms represent a domain. As the first step, we
use ranked domain-specific keywords to repre-
sent the relationships among domain ontology.

Equation (2) shows how we calculate the
significance of keyword (k) in service (s) re-
garding domain (d). rank(k,d) represents the
rank of the keyword (k) in the domain ontol-
ogy (d). If a keyword highly represents a domain
(it ranks in the top Ω keywords, e.g., the top
100 keywords), its tf-idf value will be amplified.

kf idf df

tf idf
k d

k s d

k s

− −

=
− ⋅ + −

⋅

, ,

,
((

(,)
/))1 1

rank

Ω
Ω β rank(

k d

tf idf
k s

,)

,

≤

−

Ω

 otherwise

(2)

As new services are added into a domain,
its domain ontology will increase. Since a
domain ontology will keep on evolving, its top
ranked keywords are divided into sections (i.e.,
square root of Ω) to decide its amplifier scale.
For example, considering the top 100 keywords
for a domain, its top 10 (100) keywords will
be put into one section and will amplify their
tf-idf value by 1.1 (if the coefficient
β (β ∈ [,]0 1) is set to be 1).

Equation (3) shows how we calculate the
ranking of keyword (k) in domain (d). num(k,d)
represents the frequency of the keyword (k) in
the domain ontology (d). It is divided by the
maximum keyword frequency in the domain
for normalization purpose. The frequency of
the keyword is further adjusted by the distribu-
tion of the keyword over the corresponding
domains in a service repository. α is a coef-
ficient that can be adjusted in specific domains
(we will explain using examples below):

kf irf
num k d

num k d

d k d

D

k d
i

− =

⋅ ⋅ −
∈{ }

,

(,)

((,))

:

MAX

α 1
+ −() ⋅ ()

()

∈∑
1 α

num k d

num k d
d D i
i

,

,

(3)

Consider two distribution scenarios as
shown below, where the frequencies of a key-
word in two repositories are the same (118). In
scenario (a), the frequency of the keyword in
domain d1 is 100, and its frequency in domain
d2 is 18. In scenario (b), the keyword counts

Figure	2.	Extensions	to	TF-IDF

International Journal of Web Services Research, 9(3), 43-66, July-September 2012 51

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

100 times in domain d1, and counts twice in
nine other domains (d2~d10).

 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

(a) 100 18

(b) 100 2 2 2 2 22 2 2 2 2

If a keyword appears in many domains
(e.g., scenario (b)), it is more likely that it is
less important in representing any domain. For
example, since the ProgrammableWeb is a web
service registry, many services in its comprising
domains possess the same keyword “service”
with high frequency. Such a keyword is insig-
nificant in representing any domain. Therefore,

the fraction (
:

1−
∈{ }d k d

D
) in Equation (3)

intends to lower the ranking of such keywords.
Meanwhile, in scenario (a), the keyword

is likely to represent domain d1 (frequency 100)
more than domain d2 (frequency 18). In sce-
nario (b), the keyword is likely to represent
domain d1 (frequency 100) more than domain
d 2 (f r e q u e n c y 2) . T h e f r a c t i o n

(
,

,
)

num k d

num k d
d D i
i

()
()∑

�in Equation (3) reflects

such a consideration.
After calculating the kf irf

k d
−

,
 value of

each term in a domain, all terms in the domain

can be sorted. Its order in the ranked list will
be used in Equation (2).

SVM-EXTENDED
METHODOLOGY

Based on our extensions to TF-IDF, we propose
an ontology-empowered SVM methodology for
service categorization. Figure 3 outlines our
overall idea; and Figure 4 lists the pseudo-code
algorithm. Domain ontology, keyword ranking
as explained in Equation (2), is used in our
KF-IDF-DF formula to assist in creating the
vector space (step 8). Generated vector space
with all normalized service vectors are sent to
the SVM machine for classification (step 10).
Afterwards, our KF-IRF formula is used to re-
rank domain-related keywords (steps 11-14).

Different from the traditional waterfall-like
SVM methodology, as shown in Figure 3, our
extended SVM methodology does not stop at
one single round. Instead, we adopt an iterative
approach to incrementally enhance categoriza-
tion quality. As explained in Equation (2),
domain-specific keyword ranking can be used
to highlight the importance of specific keywords
(value of the attribute in the vector) when build-
ing the vector space. After one iteration, the
ranking of the keywords in a domain may be
changed. In other words, the domain knowledge
may be enriched. Therefore, such enhanced
domain knowledge can be reapplied to the KF-

Figure	3.	SVM-extended	methodology	for	service	categorization

52 International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

IDF-DF and reconstruct the vector space, and
rerun the entire process for another round (steps
6-16).

Figure 4 illustrates the pseudo code of the
extended SVM methodology. The input is a
collection of services in one specific domain (to-
gether with their related documents); the output
is enriched domain knowledge in the form of
a list of ranked keywords. As the initialization
phase, step 1 reads in all services, extracts all
terms, normalizes them (e.g., applying Porter
stemming algorithm (Porter, 1980) for prefix
and affix removal and Wordnet [http://www.
wordnet.princeton.edu] for solving the synonym
issue), and adds them to the domain ontology
(step 1.4) and repository ontology (step 1.5).
The repository ontology will be used for the
traditional TF-IDF algorithm to remove insig-
nificant terms (steps 2-5).

In the context of a service repository,
meanwhile, services are continuously registered
into domains. Therefore, the corresponding
domain ontologies have to be incrementally
built and enriched. As shown in Figure 3, we
iteratively refine and enrich domain ontology

(to revise keyword ranking) based on SVM-
based service categorization process. The initial
keyword ranking is obtained by counting word
frequency (step 1.4), and removing insignifi-
cant terms through the TF-IDF algorithm (step
4). Afterwards, each round of SVM-based
categorization process (steps 6-16) will revise
the keyword ranking; and the resulting list
will serve as an input for the next iteration of
categorization process. The termination criteria
can be set when the resulting keyword ranking
remains unchanged (for example, when the top
50 keywords ranking remains unchanged in
new iterations).

SERVICE CATEGORIZATION

Recall that our main goal is to facilitate ser-
vice categorization and discovery. Our SVM-
extended approach helps to verify whether a
service belongs to a domain, i.e., whether an
API falls into a category. As discussed earlier,
an API may naturally show features of multiple
categories. Therefore, we propose a two-phase

Figure	4.	Ontology-empowered	SVM	approach

International Journal of Web Services Research, 9(3), 43-66, July-September 2012 53

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

method to verify service categorization, as
shown in Figure 5.

Two-Phase Service Categorization

In phase 1, we intend to identify the candidate
domains where a service shows corresponding
features. In phase 2, we calculate the similarity
between the service and the candidate domains.
Using the extended-SVM approach discussed
in the last section, an API is examined against
each category and classified as either domain-
relevant or domain-irrelevant. At the end of
phase 1, a set of candidate categories are ob-
tained for each service.

Although a service may belong to mul-
tiple domains, it may show different levels of
relevance to different domains. Phase 2 thus
intends to quantify the relevance of services
to domains.

Numerous research work has been con-
ducted to calculate the similarity between ser-
vices. For example, Jiang et al. (2011) applied
the collaborative filtering method to calculate
similarity between services. In contrast, we cal-
culate similarity between a service and a domain

to evaluate the relevance of the service to the
domain. Our key idea is to model a domain as a
representative vector space, and then transform
the service-domain relevance problem into a
similarity computation problem between two
vector spaces. If the similarity between a service
and a domain exceeds a predefined threshold,
the service is considered relate to the domain.

The rationale is that a domain can be rep-
resented by a keyword-oriented vector space
comprising a collection of significant terms.
Thus, a domain is modeled as a ranked vector
of keywords derived from our SVM-extended
algorithm discussed: DKV

� �����
 (Domain Keyword

Vector). Our introduced KF-IRF (Equation 3)
is used to calculate the ranking of a keyword
in a domain. Note that the model can be refined
through iterations of verification processes
driven by comprising services. Without losing
generality, only top N (e.g., 150) keywords with
high significance will be considered. As dis-
cussed, each service can be modeled as a term
vector: SKV

� �����
 (Service Keyword Vector). Cur-

rently we compute cosine similarity between
DKV
� �����

 and SKV
� �����

 as below. Note that the

Figure	5.	Two-phase	service	categorization

54 International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

relevance values shown in Table 1 are calcu-
lated through this approach.

sim SKV
SKV DKV

DKV
SKV

i j

i j
� �����

� �����
� ������

� ������

� �,
|

() = ⋅
����� � ������

i j
DKV| | |⋅

(4)

The formula intends to calculate the rel-
evance of a given service i (API) and every
domain j (category). A threshold can be preset,
e.g., 0.6. If the resulted relevance exceeds the
preset threshold, the API is considered relevant
to the category.

Further Refinements

We further exploit obtained domain knowledge
to verify and refine service categorization.
Specially, we leverage service tags and keyword
rankings. In the context of a service repository,
tags act important roles to represent the seman-
tics of a service. Therefore, we grant more
weight to keywords highlighted by service
providers as tags. For example, if a keyword
appears in tags, its kf idf df

k s d
− −

, ,
 value can

be amplified by a predefined scale (e.g., dou-
bled).

Iterative SVM-extended approach leads to a
ranked keyword list for a domain. Such obtained
domain knowledge can be used to verify the
results of our service categorization, from an-
other direction. If a service carries representative
keywords (i.e., ranked high) in a domain, and
if such keywords appear multiple times (term
frequency or TF), it is likely that the service has
higher relevance to the domain. For example,
finance and stock are the top two keywords in
the resulted ranked keyword list from the Finan-
cial category. Consider two services which are
considered relevant to domain Financial API1
comprises terms finance (TF: 1) and stock (TF:
1), and API2 comprises terms finance (TF: 3)
and stock (TF: 3). Obviously API2 has a closer
relation to the Financial domain.

We defined the following method to veri-
fy our service categorization results. The weight

w
i tk,

of term t
k
 in service i’s term vector SKV

i

� �����

and the weight w
j tk,

of the t
k
 in domain j’s

term vector DKV
j

� ������
 are defined as follows:

w kf irf log F
i t j t i tk k k, , ,

()= − × +1

w
kf irf log F

kf irf

if F

Otherwisej t

j t i t

j t

i t

k

k k

k

k

,

, ,

,

,
()

=
− × +

−

≥1 1
����

where kf irf
j tk

−
,

denotes the kf-irf value of

term t k N
k
()≤ in the keyword ranking list of

domain j ; F
i tk,

 denotes the term frequency of

term t
k

 in service i; and the purpose of logarithm
operation is to eliminate the effects of term
frequency. In other words, the top N keywords
in domain j will be used to examine the term
list in service i. If t

k
 does not exist in service

i, then w
i tk,
= 0 , and w kf irf

j t j tk k, ,
= − , oth-

e r w i s e , b o t h o f t h e m e q u a l t o
kf irf log F

j t i tk k
− × +

, ,
()1 .

We will thus obtain a weighted term vector

WT()SKV
i

� �����
 of service i defined as:

WT() ,
,

SKV t w
i k i tk

� �����
= (){ }

and a weighted term vector WT()DKV
j

� ������
 of

domain j defined as:

WT() ,
,

DKV t w
j k j tk

� ������
= (){ }

The following formula verifies whether a
service is relevant to a domain, by calculating
the cosine similarity between the weighted term
vectors SKV i

� �����
 and DKV

j

� ������
. Compared to the

equation (4), here we leverage the representative
keywords in the domain to examine the results.

International Journal of Web Services Research, 9(3), 43-66, July-September 2012 55

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

sim

WT WT

SKV DKV

SKV DKV

i j

i j

� ����� � ������

� ����� � ����
,

. (

()
=

()
���

� ����� � ������
)

| () |

()
, ,

WT WTSKV DKV

w w

i j

k

N

i t j t

k

k k

()

=
×

=

=

∑ 1

11

2

1

2N

i t k

N

j t
w w

k k∑ ∑× =, ,

 (5)

EXPERIMENTS AND
DISCUSSIONS

We have conducted a series of experiments to
evaluate our proposed techniques and meth-
odology.

Testbed Establishment and
Experimental Preparation

We use the publically available Programma-
bleWeb as our testbed. The first step is to grab a
complete image of the PW repository, meaning
that we fetch the available metadata of each
of its comprising Web APIs and mashups. PW
provides a set of programmable APIs to allow
users to fetch some descriptive data about their
registered services: summary, tag, description
and category information. An APIkey has to be
applied and granted before using these APIs.
Upon request, an XML file called Atom feed
document, will be responded carrying requested
information. However1, until the end of 2011,
one Atom feed document can carry information
for up to 20 services. Therefore, to retrieve
information for the entire set of over thousands
of services, we had to send many requests. We
found that not all services can be extracted
in this approach. The process was stopped at
some service pages, whose XML documents
are broken or because of network overtime.

An alternative is the more labor-intensive
crawler approach, which goes to every corre-
sponding Web page and extracts relative data
based on embedded HTML tags. The crawler
that we adopted is the open-source Heritrix
(http://crawler.archive.org/). However, crawl-

ing all comprising hierarchical pages from
such a large-scale website is not a trivial task.
Its efficiency is much lower than the first PW
API-based approach. As a result, we decided
to adopt a hybrid approach. PW API method is
adopted to retrieve as much as possible service
metadata. When exceptions occur, the crawler
method is used to fetch the corresponding
metadata. Figure 6 lists the pseudo code of
constructing an “image” of the PW site.

The key concern is the efficiency, since
crawler takes much longer time to retrieve the
metadata of a service than using PW APIs. We
leveraged PW API to retrieve API metadata in
pages with a capacity of 20 in default (Step 2).
If an exception occurs when retrieving a page,
we tuned the page capacity to 1 to fetch the rest
services in the original page (Steps 8-13). A
stack structure was used to store services that
cannot be retrieved using PW API approach
(Steps 7, 12). Then for each block in the stack
comprising continuous service ids, the crawler
was invoked to retrieve the corresponding
service metadata, which will be integrated with
the data retrieved through the PW API approach
(Steps 14-18).

We implemented an SVM Web service
leveraging the LIBSVM (Chang and Lin 2011),
a library with Java APIs for supporting SVM-
based classification and regression analysis.

All of our algorithms and experiments
are developed in Java, and conducted on PCs
with Intel Core 2 CPU T7300, @2 GHz and 2
GB main memory, running the Windows XP
operating system.

Domain Ontology Construction

We designed experiments to evaluate the ef-
fectiveness of building domain ontology using
our method. The first step is to build a base line.
From each of the 68 preset PW categories, we
wrote code to identify all terms in the forms
of verb and noun, and then rank all of them by
their frequency in the domain. Then focusing on
the top 100 terms, three graduate/undergradu-
ate students were asked to manually adjust the
rankings of the terms and sort them by their

56 International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

relevance to the domain name, according to
their understanding and common sense.

Based on the constructed baseline of key-
word ranking, we ran three techniques (TF-IDF,
MI, and our KF-IRF) over the entire Program-
mableWeb testbed. According to Church and
Hanks (1990), the Mutual Information (MI)
between a term t and category c is defined as:

I t c p e e
p e e

p e p ee e
t c

t c

t ct c

, (,) log
(,)

() (){ , } { , }

() =
∈ ∈
∑ ∑
0 1 0 1

Each method will result in a ranked
keyword list. Table 2 lists the top 15 ranked
keywords in the domain Travel, using three
methods TF-IDF, MI, and KF-IRF, respectively.
It is shown that our method (KF-IRF) performs
slightly better than the other two methods. Some
top keywords resulted from MI and TF-IDF are
not relative to the domain, such as the keyword
“availability” listed by MI, and the keywords
“search” and “property” listed by TF-IDF.

To precisely compare the effectiveness of
generating domain ontology using the three
methods, we calculate the standard deviation
for each method as follows:

d test base
rank test rank test

i

n

test i base i
,

() /
() =

()− ()

=∑ 1

γ
2

n
�

where base denotes the normalized ranked
keyword list generated by domain experts; test
denotes the ranked keyword list generated by
a categorization method; γ is a normalization
factor.

The basic idea is to measure the diversity
of how much variation between the ranking of
each keyword in one approach from that in the
baseline. The standard deviation of one method
checks the dispersion of all comprising key-
words. A lower standard deviation indicates
that the ranking method tends to be more ac-
curate. Because domain ontology has to be
incrementally built, the ranking of a specific
keyword in a domain is not absolute. Meanwhile,

Figure	6.	Pseudo	code	of	constructing	PW	testbed

International Journal of Web Services Research, 9(3), 43-66, July-September 2012 57

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

our baseline ranking is also depended on human
decisions. Therefore, we use a normalization
factor to eliminate such random factors. For
example, a keyword ranked as second or third
is considered no difference. When setting γ = 5
, we obtained the effectiveness comparison
among the three approaches, by considering
the top 50 keywords and top 100 keywords,
respectively (on the left and right). As shown
in Figure 7, our method shows the lowest stan-
dard deviation.

As discussed, our domain knowledge-
empowered SVM methodology adopts itera-
tions to incrementally reach better service
categorization accuracy. We thus studied the
convergence rate of our approach. We set the
termination criterion as the standard deviation
remains unchanged in two iterations (without
losing much accuracy, we consider the top 100
keywords). Figure 8 summarizes our experi-
mental results over the category Travel. Using
different scales of testing sets including 1000,
3000, 5000, 7190 services, at most five itera-

tions are needed to get the best categorization
results.

Accuracy Analysis

We designed a set of experiments to compare the
service categorization accuracy between using
our ontology-empowered SVM methodology
and directly applying the SVM methodology.
We adopted three indexes, Precision,	Recall,
and F-measure, to evaluate the performance of
service categorization. Precision is the fraction
of the services that are correctly considered
as relevant to the target domain; Recall is the
fraction of the relevant services that has been
correctly categorized into the target domain;
F-measure is a weighted average of Precision
and Recall. Precision,	Recall,	and	F-measure
are formally defined as follows.

Precision
C

C

R = ;

Table	2.	Top	15	ranked	keywords	

TF-IDF MI KF-IRF

Travel Travel Travel

Booking Booking Booking

Hotel Hotel Hotel

Flight Flight Flight

Reservation Reservation Trip

Trip Airline reservation

Rental Vacation Vacation

Vacation Airport Rental

Airport Trip Airport

Airline Rental Airline

Search Destination Accommodation

Tours Accommodation Tours

Accommodation Traveler Destination

Guide Transportation Transit

Property Availability Traveler

58 International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Recall
C

R

R = ;

F measure
Precision Recall

Precision Recall
− =

×
+

2.

where,

• C represents the set of services that are
categorized as relevant to a domain; |C|
denotes the number of services in C.

• R represents the set services that should be
categorized as relevant; |R| indicates the
number of services in R.

• C
R

 represents the set of services as the
intersection of the sets R and C; |C

R
| in-

dicates the number of services in C
R

.

We applied our approach to evaluate all
APIs in ProgrammableWeb against the 68 preset
categories. The training set for each category
comprised two parts: domain-relevant set and
domain-irrelevant set. 80% of the APIs listed

Figure	7.	Comparison	of	keyword	ranking

Figure	8.	Comparison	between	different	iterations

International Journal of Web Services Research, 9(3), 43-66, July-September 2012 59

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

in the category by ProgrammableWeb formed
the domain-relevant set; the same amount of
APIs randomly selected from other categories
formed the domain-irrelevant set. Table 3 lists
the categories that have more than 100 APIs. As
we discussed earlier, our approach also relies
on the scale of training dataset. Therefore, we
only examined the categories that can provide
sufficient training sets.

Recall of most categories is 100 and the
average recall reaches 99.78. For the precision
index, the average reaches 82.07. However, the
precision of the “Search” category is low (57.14,
highlighted in Table 3). Our investigation found
that the category name Search appears in quite
a number of APIs, showing that the APIs provide
the ability of information retrieval. That is why
some APIs from other domains were categorized

Table	3.	Evaluation	of	categorization	accuracy	

Domain
Single-class SVM Knowledge-Empowered SVM

Precision
(%)

Recall
(%)

f-Measure
(%)

Precision
(%)

Recall
(%)

F-Measure
(%)

Advertising 69.66 100 82.12 84.97 100 91.87

Education 67.66 100 80.71 84.96 100 91.86

Email 66.51 100 79.89 83.88 100 91.23

Enterprise 62.25 99.65 76.63 73.28 100 84.58

Financial 82.45 99.29 90.09 77.90 99.29 87.30

Games 74.07 99.00 84.74 84.74 99.00 91.32

Government 81.49 100 89.80 91.6 100 95.61

Internet 63.22 99.14 77.21 83.30 99.78 90.80

Mapping 59.90 99.62 74.82 75.64 100 86.13

Messaging 70.60 100 82.77 86.36 100 92.68

Music 88.04 100 93.64 93.10 100 96.42

Payment 75 100 85.71 86.53 100 92.78

Photos 71.18 99.40 82.96 81.95 99.40 89.83

Reference 55.60 99.63 71.37 83.28 100 90.87

Science 73.79 100 84.92 91.81 99.53 95.51

Search 35.81 97.52 52.39 57.14 99.00 72.46

Security 60.93 97.76 75.07 90.41 98.50 94.28

Shopping 69.02 100 81.67 86.98 100 93.04

Social 57.54 99.26 72.85 75.65 100 86.13

Telephony 51.10 99.56 67.54 72.95 100 84.36

Tools 54.18 99.78 70.23 83.74 100 91.15

Transportation 66.25 100 79.69 94.64 100 97.24

Travel 73.89 99.33 84.74 89.34 100 94.37

Utility 42.10 96.55 58.63 64.08 100 78.11

Video 66.41 100 79.81 73.64 100 84.81

Average 65.55 99.42 78.40 82.07 99.78 89.79

60 International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

into the Search domain. Such findings further
prove that some APIs registered at the Program-
mableWeb naturally belong to multiple do-
mains.

To evaluate the effectiveness of our domain
knowledge-empowered service categorization
approach, we applied the traditional SVM
method to redo the experiments over the services
on ProgrammableWeb. The results are listed
in Table 3 as well. It is shown that our method
exceeds the traditional SVM method in each of
the categories comprising more than 100 APIs.

We further conducted experiments to
evaluate the efficiency of our approach facing
different scales of testing sets. We compared the
precision/recall values of using our methodol-
ogy with those of using the traditional SVM
methodology, for categorizing travel-related
services. The same experiments were conducted

over difference scales of testing sets containing
different number of services: 1000, 3000, 5000,
and 7190. As explained, the experiments were
repeated until the termination criterion is met
(the precision rate remains). Table 4 summarizes
our findings.

As shown in Table 4, our methodology
outperforms the traditional SVM in both preci-
sion and recall indexes. For the Recall index,
as long as the scale of the testing set becomes
large enough (more than 1000 services), our
methodology always reaches higher than 98.03,
meaning that our method is good at identifying
all services containing significant domain-re-
lated keywords. For the Precision index, our
method outperforms the traditional SVM even
from the first iteration, and terminates quickly
(no more than 5 times for the test set containing
7190 services). In general, using our method,

Table	4.	Categorization	accuracy	comparisons	

 #test
Test# 1000 3000 5000 7190

Traditional SVM

precision 95.54 82.87 74.62 73.89

recall 99.33 99.33 99.33 99.33

F-measure 97.40 90.36 85.27 84.74

Knowledge-empow-
ered SVM

Iteration1

precision 100 96.77 96.15 94.33

recall 99.33 99.33 99.33 99.33

F-measure 99.66 98.03 97.71 96.77

Iteration2

precision 99.33 96.77 96.17 94.37

recall 99.33 99.33 100 100

F-measure 99.33 98.03 98.05 97.10

Iteration3

precision 99.33

X

96.17 86.78

recall 99.33 100 100

F-measure 99.33 98.05 92.92

Iteration4

precision

X X X

86.28

recall 100

F-measure 92.63

Iteration5

precision

X X X

86.28

recall 100

F-measure 92.63

** “X” means that this iteration does not exist

International Journal of Web Services Research, 9(3), 43-66, July-September 2012 61

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

values of both precision and recall indexes
become better in newer iterations, until remain-
ing unchanged when iterations stop.

In our experiments, we used the set of
services originally categorized by the Pro-
grammableWeb as the reference points. When
examining the other services that are categorized
as travel-related by our methodology, we found
that their descriptions do contain high-rank
keywords according to our constructed domain
ontology. For example, the service named “Ya-
hoo Traffic” is categorized as “others” on the
PW. However, its descriptions contain several
high-rank travel-related keywords including:
traffic (7:15), transit (1:5), route (1:21). A
number pair (X:Y) represents the appearance
frequency of the keyword in the service de-
scriptions and the ranking of the keyword in
the domain, respectively.

Such findings prove that our methodology
has the ability to: 1) justify existing categoriza-
tion of services; 2) identify services that belong
to multiple domains; and 3) find services that
should be categorized into different domains.
For the second and third types of services, we
choose to add tags to them, so that such infor-
mation may support further services discovery.

Validation

We have collected all API data of Program-
mableWeb in September 2011, and December
2011, separately. We found that 29 APIs were
moved from their original categories to different
categories. We tested whether our classifica-
tion method can support these changes. We
also applied the traditional SVM method to
conduct the same experiments. The results are
listed in Table 5.

Among all APIs that changed their catego-
ries, three APIs are exceptions. Two APIs
(openBmap, OpenGeoTracker) were moved
from the Mapping category to the Other cate-
gory by ProgrammableWeb, which means that
their category information was removed. An
API (43Things) is difficult to be automatically
classified into any category Goal	Setting, since

there are only four APIs in the category. For
the other 26 APIs, our method supported 16
cases of API re-categorization and suggested
the same new categorizations as the manual
process. For the other 10 APIs, according to
the approach, our method can provide their
similarity to the new categories, ranging from
0.09 to 0.39. As shown in Table 5, the tradi-
tional single-class SVM classification sup-
ported 14 API re-categorization. Two cases
supported by our approach but not the tradi-
tional SVM approach are highlighted in Table
5. This study again proved the effectiveness of
our approach.

Performance

We evaluated the performance of our method.
Here we describe our results for the categories
that have more than 100 APIs Using the same
training set as mentioned, we repeated the ex-
periments with different scales of testing sets
including 1000, 3000, 5000, and 7190 (all)
APIs. In each experiment, we recorded the
average execution time of service classifica-
tion, as summarized in Figure 9. The average
execution time ranges from 79 to 174 seconds.
The largest execution time is 424 seconds. This
overhead is acceptable because service categori-
zation only needs to be conducted periodically.
Furthermore, our experiments evaluated every
iteration (with different testing sets) separately,
without considering the domain ontology built
from smaller scale of testing data. In reality,
domain ontology will be carried on to start a
new service categorization process. As a result,
the number of iteration may be decreased and
the execution time will be shorter.

Furthermore, we examined the number of
iterations that is needed to finish service catego-
rizations. Again we focus on the 25 categories
containing more than 100 APIs. For each cat-
egory, the testing set was set to be 7190 (all)
APIs. As shown in Figure 10, the average it-
eration number is 3.8. Only two domains iter-
ated more than 5 times.

62 International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

CONCLUSION

The unique structural feature of service re-
positories and their hidden domain knowledge
inspire us in extending the traditional SVM
methodology to enhance the effectiveness and

efficiency of automatic service categorization.
Our proposed technique is particularly valuable
in building service search engines oriented to
small- to middle-scale service repositories. It
will also help services discovery and recom-
mendations.

Table	5.	Validation	results	

API Name Original Category New Category Our
Method

SVM

Socialight Mapping Social √ √

Spot2be Mapping Social √ √

Veniu Mapping Social √ √

waldstat Mapping Social √ √

Gnip Internet Social √ √

Safe2pee Mapping Search √ √

Touch Local Mapping Search √ √

Unlock Mapping Search √ √

SingTelinSingBusiness Search Telephony Search √ √

ShowMyIP Mapping Internet √ √

VodoModo Mapping Video √ √

ViaMichelin Mapping Travel √ √

YourStreet Mapping News √ √

Strike Iron Tax Service Other Reference √ √

eBay Shopping Search √ ×

USGS Gazetteer Query Government Mapping √ ×

43Things Other Goal Setting × ×

openBmap Mapping Other × ×

OpenGeoTracker Mapping Other × ×

Tellmewhere Mapping Recommendations × ×

mite Utility Office × ×

Prototype GeoIP Mapping Internet × ×

Quova Mapping Internet × ×

Where2GetIt Geospatial Mapping Tools × ×

Unified Software AddressVal Mapping Tools × ×

Tixik Mapping Reference × ×

SitOrSquat Mapping Search × ×

Wigle Mapping Search × ×

Where2GetIt SlippyMap Mapping Search × ×

International Journal of Web Services Research, 9(3), 43-66, July-September 2012 63

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

As the first step, we focus on one feature
of domain knowledge: keyword ranking that
indicates the significance of a term to represent
a domain. If a service is tagged, manually or
systematically, by significant terms of a domain,
it is more likely that the service belongs to the
domain. Consequently, a service may also rep-
resent multiple overlapped domains. Semantic

relationships between terms may further help
to extract domain knowledge. We will study
this topic in our future research.

We plan to continue our research in the
following directions. First, we will study the
effectiveness and efficiency of our approach
on other popular service repositories such as
Tech-News and TechFreaks. Second, we will

Figure	9.	Performance	evaluation

Figure	10.	Iteration	numbers

64 International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

encapsulate our technique and develop a Web
service to monitor and categorize services on
the ProgrammableWeb. Third, we will explore
to enhance existing service repository-oriented
service search engine.

ACKNOWLEDGMENT

The work described in this paper is partially
supported by the National Natural Science
Foundation of China under Grant No. 61202031,
60970017, 61100017, the National Science &
Technology Pillar Program of China under grant
No.2012BAH07B01, the central grant funded
Cloud Computing demonstration project of
China undertaken by Kingdee Software (China),
and the National Science Foundation of USA
under grant IIS-0959215.

REFERENCES

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M.,
Schmidt, M., Sheth, A., & Verma, K. (2005). Web	
Service	 Semantics	 –	WSDL-S. Retrieved Septem-
ber 5, 2012, from http://www.w3.org/Submission/
WSDL-S/

Arabshian, K., Danielsen, P., & Afroz, S. (2012,
March). LexOnt: Semi-automatic ontology creation
tool for programmable web. In Proceedings	of	the	
AAAI	Spring	Symposium	on	Intelligent	Web	Services	
Meet	Social	Computing, Palo Alto, CA.

Battle, R., & Benson, E. (2008). Bridging the
Semantic Web and Web 2.0 with Representational
State Transfer (REST). Journal	of	Web	Semantics, 6,
61–69. doi:10.1016/j.websem.2007.11.002

Bianchini, D., Antonellis, V., Pernici, B., & Plebani,
P. (2006). Ontology-based methodology for e-service
discovery. Information	Systems, 31(4-5), 361–380.
doi:10.1016/j.is.2005.02.010

Boser, B. E., Guyon, I., & Vapnik, V. (1992). A
training algorithm for optimal margin classiers. In
Proceedings	of	the	5th	ACM	Annual	Workshop	on	
Computational	Learning	Theory (pp. 144-152).

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM:	A	library	
for	support	vector	machines. Retrieved from http://
www.csie.ntu.edu.tw/~cjlin/libsvm/

Church, K. W., & Hanks, P. (1990). Word associa-
tion norms, mutual information, and lexicography.
Computational	Linguistics, 16(1), 22–29.

Coalition, O. S. (2004). OWL-S:	Semantic	markup	
for	web	services. Retrieved from http://www.w3.org/
Submission/OWL-S/

Corella, M. Á., & Castells, P. (2006). A heuristic
approach to semantic web services classification.
In Proceedings	of	the	10th	International	Conference	
on	Knowledge-Based	&	Intelligent	Information	&	
Engineering	Systems (pp. 598-605).

Dasgupta, S., Bhat, S., & Lee, Y. (2011). Taxonomic
clustering and query matching for efficient service
discovery. In Proceedings	of	the	IEEE	International	
Conference	on	Web	Services (pp. 363-370).

Dong, X., Halevy, A., Madhavan, J., Nemes, E., &
Zhang, J. (2004). Similarity search for web services.
In Proceedings	of	the	30th	International	Conference	
on	Very	Large	Data	Bases.

Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth,
A. P., & Verma, K. (2008). A faceted classification
based approach to search and rank web APIs. In
Proceedings	of	the	IEEE	International	Conference	
on	Web	Services, Beijing, China (pp. 177-184).

Hadley, A. (2009). Web	 Application	 Description	
Language	 (WADL). Retrieved from http://www.
w3.org/Submission/wadl/

Hess, A., & Kushmerick, N. (2003). Learning to
attach metadata to web services. In D. Fensel, K.
Sycara, & J. Mylopoulos (Eds.), Proceedings	 of	
the	International	Semantic	Web	Conference (LNCS
2870, pp. 258-273).

Jiang, Y. C., Liu, J. X., & Tang, M. D. (2011). An
effective web service recommendation method based
on personalized collaborative filtering. In Proceed-
ings	of	 the	9th	IEEE	International	Conference	on	
Web	service (pp. 211-218).

Jones, K. S. (1972). A statistical interpretation of
term specificity and its application in retrieval.
The	 Journal	 of	 Documentation, 28(1), 11–21.
doi:10.1108/eb026526

Junghans, M., Agarwal, S., & Studer, R. (2010).
Towards practical semantic web service discovery.
In L. Aroyo, G, Antoniou, E. Hyvonen, A. Teije, &
H. Stuckenschmidt (Eds.), Proceedings	of	 the	7th	
International	 Conference	 on	 The	 Semantic	 Web:	
Research	and	Applications	-	Volume	Part	II (LNCS
6089, pp. 15-29).

International Journal of Web Services Research, 9(3), 43-66, July-September 2012 65

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Klusch, M., Fries, B., & Sycara, K. (2006, May
8-12). Automated semantic web service discov-
ery with OWLS-MX. In Proceedings	of	 the	ACM	
International	Conference	 on	Autonomous	Agents,
Hakodate, Japan (pp. 915-922).

Klusch, M., & Kaufer, F. (2009). WSMO-MX: A
hybrid semantic web service matchmaker. Web	Intel-
ligence	and	Agent	Systems, 7(1), 23–42.

Kopecky, J., Vitvar, T., Bournez, C., & Farrell, J.
(2007). SAWSDL: Semantic annotations for WSDL
and XML schema. IEEE	Internet	Computing, 11(6),
60–67. doi:10.1109/MIC.2007.134

Lee, Y.-J., & Kim, C.-S. (2011). A learning ontol-
ogy method for restful semantic web services. In
Proceedings	of	the	IEEE	International	Conference	
on	Web	Services (pp. 251-258).

Liu, X., Zhao, Q., Huang, G., Mei, H., & Teng, T.
(2011). Composing data-driven service mashups with
tag-based semantic annotations. In Proceedings	of	
the	IEEE	International	Conference	on	Web	Services
(pp. 243-250).

Martin, D., Burstein, M., Mcdermott, D., Mcilraith,
S., Paolucci, M., & Sycara, K. (2007). Bringing
semantics to web services with OWL-S. World	
Wide	Web	(Bussum), 10(3), 243–277. doi:10.1007/
s11280-007-0033-x

NIST. (2011). Cloud	computing	definition. Retrieved
from csrc.nist.gov/publications/drafts/800-145/
Draft-SP-800-145_cloud-definition.pdf

Paolucci, M., Kawamura, T., Payne, T. R., & Sycara,
K. P. (2002). Importing the semantic web in UDDI.
In Proceedings	 of	 the	 International	Workshop	 on	
Web	 Services,	E-Business,	 and	 the	 Semantic	Web
(pp. 225-236).

Patil, A. A., Oundhakar, S. A., Sheth, A. P., & Verma,
K. (2004, May 17-22). Meteor-s web service annota-
tion framework. In Proceedings	of	the	13th	Interna-
tional	Conference	on	World	Wide	Web (pp. 553-562).

Pautasso, C., Zimmermann, O., & Leymann, F.
(2008, April 21-25). Restful web services vs. “big”’
web services: Making the right architectural deci-
sion. In Proceedings	of	the	ACM	17th	International	
Conference	on	World	Wide	Web, Beijing, China (pp.
805-814).

Porter, M. (1980). An algorithm for suffix stripping
program. Automated	Library	and	Information	Sys-
tems, 14(3), 130–137. doi:10.1108/eb046814

Ranganathan, S. (1962). Elements	of	library	clas-
sification. New York, NY: Asia Publishing House.

Sabou, M., Wroe, C., Goble, C., & Mishne, G.
(2005a). Learning domain ontologies for web service
descriptions: An experiment in bioinformatics. In
Proceedings	of	the	14th	ACM	International	Confer-
ence	on	World	Wide	Web (pp. 190-198).

Sabou, M., Wroe, C., Goble, C., & Stuckenschmidt,
H. (2005b). Learning domain ontologies for semantic
web service descriptions. Journal	of	Web	Semantics,
3(4). doi:10.1016/j.websem.2005.09.008

Sbodio, M. L., Martin, D., & Moulin, C. (2010). Dis-
covering semantic web services using SPARQL and
intelligent agents. Web	Semantics:	Science. Services	
and	Agents	on	the	World	Wide	Web, 8(4), 310–328.
doi:10.1016/j.websem.2010.05.002

Segev, A., & Sheng, Q. Z. (2010). Bootstrapping
ontologies for web services. IEEE	 Transactions	
on	Services	Computing, 5(1), 33–44. doi:10.1109/
TSC.2010.51

Sheth, A. P., Gomadam, K., & Lathem, J. (2007).
SA-REST: Semantically interoperable and easier-
to-use services and mashups. Internet	Computing,
11(6), 91–94. doi:10.1109/MIC.2007.133

Sivashanmugam, K., Verma, K., Sheth, A., & Miller,
J. (2004). Discovery of web services in a federated
registry environment. In Proceedings	of	the	IEEE	
International	 Conference	 on	 Web	 Services, San
Diego, CA (pp. 270-277).

Vitvar, T., Zaremba, M., Moran, M., Zaremba, M., &
Fensel, D. (2007). SESA: Emerging technology for
service-centric environment. IEEE	Software, 24(6),
56–67. doi:10.1109/MS.2007.178

Yang, Y., & Liu, X. (1999). A re-examination of text
categorization methods. In Proceedings	of	the	22nd	
Annual	 International	ACM	 SIGIR	Conference	 on	
Research	and	Development	in	Information	Retrieval
(pp. 42-49).

Zhang, J., Madduri, R., Tan, W., Deichl, K., Al-
exander, J., & Foster, I. (2011, July 4-9). Toward
semantics empowered biomedical web services. In
Proceedings	of	the	IEEE	International	Conference	
on	Web	Services (pp. 371-378).

Zhang, L., & Li, B. (2004). Requirements driven
dynamic business process composition for web
services solutions. Journal	of	Grid	Computing, 2,
121–140. doi:10.1007/s10723-004-4202-1

66 International Journal of Web Services Research, 9(3), 43-66, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Zhang, L.-J., Zhang, J., & Cai, H. (2007). Services	
computing. New York, NY: Springer.

ENDNOTES
1 This issue has been resolved by Programma-

bleWeb in 2012. However, the approach how
we graph an image of metadata of a service
repository can be applied to other resources
without full API support.

Jia	Zhang,	PhD,	is	an	Associate	Professor	at	Carnegie	Mellon	University	–	Silicon	Valley.	Her	
current	research	interests	center	on	Services	Computing,	with	a	focus	on	collaborative	scientific	
workflow,	service-oriented	architecture,	and	semantic	service	discovery.	She	has	co-authored	one	
textbook	titled	“Services Computing”	and	published	over	120	journal	articles,	book	chapters,	and	
conference	papers.	Zhang	is	an	associate	editor	of	IEEE Transactions on Services Computing	(TSC)	
and	of	International Journal of Web Services Research	(IJWSR).	She	is	a	member	of	the	IEEE	.

Jian	Wang,	PhD,	is	a	Lecturer	of	State	Key	Lab	of	Software	Engineering,	Computer	School,	
Wuhan	University,	China.	His	current	research	interests	focus	on	web	services.	He	has	published	
over	20	journal	articles	and	conference	papers.

Patrick	C.K.	Hung,	PhD,	is	an	Associate	Professor	of	University	of	Ontario	Institute	of	Technology,	
Canada.	His	current	research	interests	focus	on	web	services	and	business	process	management.	
He	has	published	over	100	papers.	Hung	is	an	associate	editor	of	IEEE Transactions on Services
Computing	(TSC)	and	International Journal of Web Services Research	(IJWSR),	and	International
Journal of Business Process Integration and Management	(IJBPIM).	He	is	a	member	of	the	IEEE.

Zheng	Li	is	a	PhD	student	at	State	Key	Lab	of	Software	Engineering,	Computer	School,	Wuhan	
University,	China.	Her	current	research	interests	focus	on	service	discovery.	She	has	published	
5	journal	articles	and	conference	papers.

Neng	Zhang	is	an	undergraduate	student	at	Computer	School,	Wuhan	University,	China.	His	
current	research	interests	focus	on	services	discovery.

Keqing	He,	PhD,	is	a	Professor	and	Chief	Scientist	of	State	Key	Lab	of	Software	Engineering,	
Computer	School,	Wuhan	University,	China.	His	current	research	interests	focus	on	Software	
Engineering.	He	has	published	over	100	journal	articles	and	conference	papers.

