
Knowl Inf Syst (2019) 58:669–700
https://doi.org/10.1007/s10115-018-1171-4

REGULAR PAPER

Mining and clustering service goals for RESTful service
discovery

Neng Zhang1 · Jian Wang1 · Keqing He1 ·
Zheng Li2 · Yiwang Huang3

Received: 13 October 2016 / Revised: 28 October 2017 / Accepted: 30 January 2018 /
Published online: 20 February 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract In recent years, RESTful services that are mainly described using short texts are
becoming increasingly popular. The keyword-based discovery technology adopted by exist-
ing service registries usually suffers from low recall and is insufficient to retrieve accurate
RESTful services according to users’ functional goals. Moreover, it is often difficult for users
to specify queries that can precisely represent their requirements due to the lack of knowledge
on their desired service functionalities. Toward these issues, we propose a RESTful service
discovery approach by leveraging service goal (i.e., service functionality) knowledge mined
from services’ textual descriptions. The approach first groups the available services into
clusters using probabilistic topic models. Then, service goals are extracted from the textual
descriptions of services and also clustered based on the topic modeling results of services.
Based on service goal clusters, we design a mechanism to recommend semantically relevant
service goals to help users refine their initial queries. Relevant services are retrieved bymatch-
ing user selected service goals with those of candidate services. To improve the recall of the
goal-based service discovery approach, we further propose a hybrid approach by integrating
it with two existing service discovery approaches. A series of experiments conducted on

B Jian Wang
jianwang@whu.edu.cn

Neng Zhang
nengzhang@whu.edu.cn

Keqing He
hekeqing@whu.edu.cn

Zheng Li
zhengli_hope@whu.edu.cn

Yiwang Huang
huangyw@whu.edu.cn

1 State Key Lab of Software Engineering, Computer School, Wuhan University, Wuhan, China

2 School of Computer and Information Engineering, Henan University, Kaifeng, China

3 School of Data Science, Tongren University, Tongren, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-018-1171-4&domain=pdf
http://orcid.org/0000-0002-1559-9314

670 N. Zhang et al.

real-world services crawled from a publicly accessible registry, ProgrammableWeb, demon-
strate the effectiveness of the proposed approaches.

Keywords Service discovery · RESTful service · Service goal · Topic model · Clustering ·
Recommendation

1 Introduction

Web services are basic constructs of service-oriented computing (SOC), which encapsulate
application functionalities and can be accessed over a network [1]. Thewide adoption of SOC
leads to the rapid growth of services on the Internet. Most of the existing services can be
divided into two mainstream types: Simple Object Access Protocol (SOAP)-based services
and REpresentational State Transfer (REST)-based service [also referred to as RESTful
services or Web application programming interfaces (APIs)]. The “classical” SOAP-based
services must be described using the standard Web Service Description Language (WSDL)
which packs a lot of power into describing various aspects of a service. Such verbosity is often
undesired and leaves a high entry-barrier for developers [2]. In recent years, an increasing
amount of attentions have been shifted to the RESTful services, a simpler service architecture
designed for solving the complexity of developing and describing SOAP-based services. The
RESTful architectural principles [3] are characterized by their natural suitability for theWeb,
relying almost entirely on the use of URIs for resource identification and interaction, and
HTTP for message transmission.Many companies, e.g., Google, Facebook, and Twitter, have
offered easy-to-use, public APIs that provide access to some of the resources they hold, thus
enabling third-parties to combine heterogeneous data from diverse services [4]. According
to recent statistics, more than 14,800 services have been registered at ProgrammableWeb1

(PW) as of March 21, 2016, and nearly 62% of the services are RESTful services while
only 16% are SOAP-based services. Although RESTful services can be described by several
XML-based languages such as Web Application Description Language (WADL) andWSDL
2.0, providers often use simple natural language texts on webpages to explain their APIs [5].
As an example, Fig. 1 shows a part of the descriptive data of a PW API, Cleartrip Hotel.

The publicly registered services can greatly improve the efficiency and quality of soft-
ware development [6]. A large number of service discovery approaches have been proposed
to find reusable services according to user queries. However, it remains several challenging
issues. On one hand, most of the approaches [7–18,20–23] are designed for SOAP-based
services, while only limited attentions [2,6,24–28] have been given to RESTful services. To
the best of our knowledge, existing RESTful service discovery approaches are mainly based
on hRESTS [29], a machine-readable microformat for RESTful services. The service docu-
ments required for hRESTS construction are often difficult to collect for services registered
at public platforms such as PW. As a matter of fact, current service registries still essentially
adopt the keyword-based technology for service search, which usually suffers from low recall
[19,30]. Moreover, many activities on theWeb such asWeb search are driven by users’ high-
level goals [31], e.g., “book hotels” and “search playlist,” in order to obtain accurate search
results. Because the keyword-based technology is mainly based on the bag-of-words model
that cannot capture important relationships between the words [32] in service descriptions
and user queries, it is insufficient to retrieve accurate services for users’ functional goals.

1 http://www.programmableweb.com/.

123

http://www.programmableweb.com/

Mining and clustering service goals for RESTful service. . . 671

name

tags
description

Fig. 1 Example Web API in PW

On the other hand, apart from the service search technology, the quality of user queries
is another factor that will affect the results of service discovery. A query that precisely
represents user requirements will help retrieve accurate services. Unfortunately, it is often
difficult for users to specify high-quality queries due to the lack of knowledge on their desired
service functionalities. For example, suppose someone wants to query the accommodation
information in some place, there can be many semantically similar functionalities offered by
various services, such as “get hotel,” “find hostel,” “retrieve accommodation,” and “search
apartment.” It is non-trivial for the user to come upwith all these similar functionalities, which
will result in the missing of many relevant services. Several query expansion mechanisms
[10–13] have been proposed to address the incompleteness issue of user queries. Their basic
idea is to enhance the queries by using relevant concepts or terms retrieved from lexical
databases (e.g., WordNet2 [33]) or domain ontologies. Although these mechanisms can help
retrievemore services that are relevant to user queries, theymayalso introducemany irrelevant
services due to the fact that some expanded concepts or terms might not be desired by users.

To address the above issues, we propose an approach to support the discovery of RESTful
services by leveraging service goal (i.e., service functionality) knowledgemined from textual
descriptions of services. In our approach, the available services are grouped into clusters
using probabilistic topic models, e.g., Latent Dirichlet Allocation (LDA) [34]. Service goals
extracted from the services’ textual descriptions are also clustered based on the topicmodeling
results of services. These clustering results are used to facilitate service discovery for user
queries. Specifically, service clusters are used to reduce the service search space. Based on
the service goal clusters, we design a mechanism to help users refine their initial queries
by recommending semantically similar service goals based on the service goal clusters.
Relevant services are finally retrieved by matching user selected service goals with those
of candidate services in the reduced search space. To improve the recall of the goal-based
service discovery approach (referred to as GoSD), we further propose a hybrid approach by

2 http://wordnet.princeton.edu/.

123

http://wordnet.princeton.edu/

672 N. Zhang et al.

integrating it with two existing service discovery approaches: the keyword-based approach
and a probabilistic semantic approach based on LDA. We conducted a series of experiments
on a real-world service dataset crawled from PW to evaluate the proposed approaches. The
results demonstrate that GoSD can retrieve accurate services and that the limited recall of
GoSD can be improved by the hybrid approach.

The remainder of this paper is organized as follows. Section 2 discusses some related
works. Section 3 gives an overall framework of the proposed service discovery approach. The
framework comprises two major modules: offline data process and online service discovery,
which are described in Sects. 4 and 5, respectively. Section 6 presents the experiments and
analysis. Section 7 concludes the paper.

2 Related works

2.1 Service discovery

As a fundamental issue of SOC, service discovery has attracted a lot of attentions. Many
research works on service discovery perform profile-based service signature (e.g., inputs,
outputs, preconditions, and effects) matching or exploit the structure of WSDL document to
find similar services [6]. For example, Wang et al. [7] described a service discovery approach
that combines traditional information retrieval techniques [e.g., vector space model (VSM)
and term frequency—inverse document frequency (TF-IDF)] with a structure matching algo-
rithm for WSDL. In [8], Plebani et al. evaluated the similarity between service interfaces in
WSDL by considering the structures of service interfaces and the terms used inside them. Liu
et al. [9] leveraged bipartite graphs to calculate similarity between services. Moreover, many
classification techniques and clustering techniques have been applied in service discovery
[14–19,30,35–37]. Service classification uses supervised learning techniques (e.g., decision
tree and support vector machine) to classify services to predefined categories, while service
clustering leverages unsupervised learning techniques (e.g., K-Means and topic models) to
group similar services on the basis of textual features. Both these techniques can help reduce
the search space during service discovery and thus boost the discovery performance. How-
ever, these syntactic approaches are insufficient to find semantically similar services for user
queries. In addition, they mainly consider the discovery of WSDL-based SOAP services,
while neglect the discovery of RESTful services described in short texts.

A number of semantic approaches [20–23] have been proposed to enable automatic service
discovery. The key of most semantic approaches is to describe services and queries using
ontology-based semantic description languages (e.g., OWL-S, WSMO, and SAWSDL) and
develop logical reasoning algorithms to retrieve similar services. For example, Klusch et al.
[20] proposed an approach for matching services described using OWL-S, which combined
logical reasoning and syntactic concept similarity computation. In [21], a hybrid service
matchmaker was designed for SAWSDL, which determined three types of similarities: logic-
based similarity, text-based similarity, and structural similarity. These approaches have shown
to be effective because of the accurate descriptions of services and queries. However, they are
limited by requiring considerable efforts on correctly specifying and managing ontologies,
and annotating services and queries [38].

To the best of our knowledge, only a few works [2,6,24–28] have reported the discovery
of RESTful services. Most of these approaches are based on hRESTS [29] and its semantic
extensions like SA-REST and MicroWSMO. They are limited by the fact that the HTML

123

Mining and clustering service goals for RESTful service. . . 673

service documents required for hRESTS construction that contain operation descriptions
(e.g., addresses, HTTPmethods, and input/output data formats) are usually difficult to collect
for services at public registries. For example, the operation descriptions of RESTful services
registered at PW are generally hidden in services’ homepages. It requires considerably more
efforts to collect.

To sumup, existingworks have their respective limitations in dealingwithRESTful service
discovery. In this paper, we propose an approach for RESTful service discovery based on
service goal knowledge mined from services’ textual descriptions.

2.2 Service query expansion

In order to retrieve more services that are relevant to user queries, several query expansion
mechanisms [10–13] have been proposed to enhance queries by using relevant concepts or
terms extracted from domain ontologies or lexical databases. For example, Kokash et al.
[10] addressed the inadequacy of VSM by expanding both WSDL descriptions and queries
with synonyms in WordNet. Paliwal et al. [12] proposed to enhance queries by utilizing
relevant concepts extracted from domain ontologies. Comparedwith theseworks, we propose
a novel query expansionmechanism by leveraging service goal knowledge. To ensure that the
expanded queries can precisely reflect user requirements, users are requested to participate
in the query expansion process. Similar to our work, Jung et al. [28] proposed a natural
language processing (NLP)-based approach to mine functional goals from services’ textual
descriptions and a goal suggestion mechanism for user queries. The mechanism was based
on the measurement of Jaccard similarity between functional goals and user queries, and was
thus unable to suggest functional goals that are semantically similar to queries. In [6], we
proposed aNLP-based approach to extract service goals from textual descriptions of services,
as well as a goal recommendation mechanism using the k-Nearest Neighbors algorithm (or
k-NN for short). Compared with these studies, this work measures semantic similarities
between service goals and user queries; therefore, our goal recommendation mechanism can
recommend semantically similar service goals for queries.

The main contributions of this work lie in three aspects. Firstly, we propose an approach
to group services into clusters using topic models and cluster the extracted service goals
based on the topic model trained for services. Secondly, a new mechanism is designed to
recommend similar service goals for user queries by leveraging service goal clusters, whereas
in [6] goals are recommended based on the retrieved similar services using k-NN. Thirdly,
we propose an approach that can retrieve accurate services according to user selected service
goals from the recommendations.

3 Overall service discovery framework

As illustrated in Fig. 2, the overall framework of the proposed RESTful service discovery
approach consists of two major modules: offline data process and online service discovery.
In the offline module, three tasks are performed over available services. Firstly, services are
modeled using topic models, e.g., LDA, and grouped into clusters based on the generated
service-topic distributions. Secondly, service goals are extracted from the services’ textual
descriptions using the service goal extraction approach proposed in our prior work [6]. A
service-service goal assignment matrix is built to record the service goals of each service.
Thirdly, the extracted service goals are folded into the topic model trained for services (using
a technique called Folding-in [15,16,39]) and clustered based on their topic distributions.

123

674 N. Zhang et al.

Web Services

Service Goal
Clustering

Service Clustering
based on Topic Models

Service Goal
Extraction

Topic
Matching

Goal
Recommendation

and Selection

Service
Retrieval

Relevant
Services

Offline Data
Process
Module

Online
Service

Discovery
Module

Service
Clusters

Service Goal
Clusters

Service-Service Goal
Assignment Matrix

Historical Goal
Recommendation

RepositoryUser
Query

Fig. 2 Overall service discovery framework

In the online module, the service clusters, service-service goal assignment matrix, and
service goal clusters produced in the offline module are leveraged to facilitate the service
discovery for user queries.When a user query is sent to the service search engine, the first step
is to determine a set of topics that are relevant to the query. The identified relevant topics are
used in two subsequent steps, i.e., goal recommendation and service retrieval. As the initial
query might be incomplete due to the user’s lack of knowledge on his/her desired service
functionalities. In the goal recommendation step, service goals assigned to the clusters that
correspond to the relevant topics are recommended to help the user refine the initial query.
To facilitate the user selection of appropriate service goals from the recommendations, we
propose a method to sort the recommended goals by measuring their semantic similarities to
the query. Furthermore, a historical goal recommendation repository is maintained to record
service goals selected by users for their queries. The repository is leveraged to produce better
service goal recommendations for future user queries. In the final step, relevant services are
retrieved by matching the user selected service goals with those of services. To improve the
efficiency, the scope of service search is restricted to the service clusters that correspond to
the relevant topics of the query.

4 Offline data process

In this section, we describe the three offline steps of the proposed service discovery frame-
work, namely the service clustering based on topic models, service goal extraction, and
service goal clustering.

123

Mining and clustering service goals for RESTful service. . . 675

4.1 Service clustering based on topic models

Comparing a user query to all services in a large repository will be time-consuming and
computationally expensive [16,18].Many clustering techniques have been adopted to address
this issue by grouping similar services together [14–19,37]. By organizing services into
clusters in advance, the service search space can be restricted to the clusters that are relevant
to a user query, which will largely reduce the amount of comparisons and improve the
efficiency.

Recently, topic models, e.g., LDA, have been widely applied in service clustering [15–
18,37]. They can learn a set of latent topics to capture the underlying semantics of services
[18]. After the topic modeling process, each service can be represented as a vector in terms
of the learned topics. This can reduce the data dimensionality as the size of the topic space,
which is typicallymuch smaller than the size of theword vocabulary [30].Moreover, semantic
similarities between services and user queries (after inferring their topic distributions) can
be approximately measured based on their topic vector representations [39].

We use LDA to learn latent topics from the words describing services and then group
the services into clusters based on the learned topics. We first take the following steps to
preprocess the descriptive data of each service:

1. Tokenization We perform tokenization over the descriptive data to produce the original
content vector by using the NLTK3 [40] toolkit.

2. Word form normalization Stemming and lemmatization are two widely applied word
form normalization techniques [41], which can transform the inflected words into their
stems and lemmas, respectively. For a word, the stem is a part of the word to which
affixes can be attached, and the lemma is the basic form of the word. For example, the
stem and lemma of “manage” are “manag” and “manage,” respectively. There are some
differences between these two techniques. On the one hand, stemming can deal withmore
morphological variants of words, for example, the noun forms of verbs, such as “book-
ing” and “management.” On the other hand, the semantic similarity between lemmas can
be measured using semantic networks or lexicons likeWordNet, BabelNet, and VerbNet.
WordNet is viewed as themost popular computational lexicon of theEnglish language and
many semantic similarity algorithms based on WordNet have been proposed; BabelNet
is a multilingual lexicalized semantic network created by linkingWikipedia to WordNet;
and VerbNet is a comprehensive verb lexicon that incorporates both semantic and syn-
tactic information. Considering the popularity and coverage of WordNet, we choose it as
the basic lexicon used in our approach. The algorithms of stemming and lemmatization
have been included in NLTK. In this work, stemming is used to prepare data for LDA,
and lemmatization is used to refine the service goals extracted from services’ textual
descriptions, such that in the goal recommendation step, the semantic similarity between
service goals and user queries (after processed by lemmatization) can be measured using
WordNet.

3. Stop word removal Stop words such as “the,” “other,” and “of” are removed.

Next, the preprocessed services are used as training data of LDA. LDA is a generative
probabilistic model for a corpus (e.g., a collection of documents). The basic idea is that
documents are random mixtures over a set of latent topics, where each topic is characterized
by a distribution over words [34]. The generative process for a set of services S given T latent
topics is as follows:

3 http://www.nltk.org/.

123

http://www.nltk.org/

676 N. Zhang et al.

α (z) β(s) z w

T|S|
Ns

Fig. 3 Graphic model of LDA for a set of services S. |S| is the number of services, Ns is the number of words
in service s, and T is the number of latent topics

1. Pick a multinomial distribution φ(z) for each topic z ∈ {1, . . . , T } from a Dirichlet
distribution with parameter β;

2. Pick a multinomial distribution θ(s) for each service s ∈ S from a Dirichlet distribution
with parameter α;

3. For each word w in service s:

(a) Pick a topic z from the multinomial distribution θ(s);
(b) Pick w from the multinomial distribution φ(z).

The generative process described above can be illustrated using a graphic model, as shown
in Fig. 3. Fitting the LDA model involves estimating both the topic distribution of each
service s, θ(s), and the word distribution of each topic z, φ(z) [42]. We implement LDA
based on the JGibbLDA4 toolkit that uses Gibbs sampling for parameter estimation. The
Gibbs sampling algorithm starts with random topic assignments of all words in the services,
w = {w1, w2, . . . , wN } (each word wi belongs to some service si). In a Gibbs sample, the
topic of each word wi is resampled using

p (zi = t |z−i ,w) ∝ n(wi)−i,t + β

n(·)
−i,t + |V | β

n(si)−i,t + α

n(si)−i. + Tα
, (1)

where z−i denotes the topic assignments of all words except the current word wi ; n
(wi)−i,t is

the number of instances of word wi assigned to topic t , not including the current word; V
is the set of distinct words in w; n(si)−i,t is the number of words in service si assigned to topic

t , excluding the current word; n(·)
−i,t is the number of all words in w assigned to topic t ,

except the current word; and n(si)−i. is the number of words in service si (assigned to all topics),
excluding the current word. Intuitively, the first ratio expresses the probability of word wi

under topic t , and the second ratio expresses the probability of topic t in service si [43].
After the “burn-in” period (i.e., discarding an initial set of samples to avoid starting

biases) [39,44], the topic-word distribution φ(z) and the service-topic distribution θ(s) can be
estimated given a Gibbs sample as

φ̂(z)
w = n(w)

z + β

n(·)
z + |V | β

, (2)

θ̂ (s)
z = n(s)

z + α

n(s)· + Tα
, (3)

where n(w)
z is the number of word w ∈ V assigned to topic z; n(·)

z is the number of all words
assigned to topic z; n(s)

z is the number of words in service s assigned to topic z; and n(s)· is
the number of words in service s (assigned to all topics).

4 http://jgibblda.sourceforge.net/.

123

http://jgibblda.sourceforge.net/

Mining and clustering service goals for RESTful service. . . 677

It is worth noting that the number of latent topics T must be determined before training.
The study in [43] shows that as T increases, the LDA model can more accurately fit the
data until an optimal point is reached and thereafter the model becomes more complex than
necessary and results in overfitting which degrades the performance of the model. Several
methods have been proposed to determine T that can best account for a corpus. For example,
Griffiths and Styvers [43] discussed amethod for estimating posterior probabilities p(w|z, T)

of the LDA models trained using a range of values for T , and the best T is chosen based
on the model that leads to the maximum posterior probability. In [30,34], the best T was
determined by measuring the likelihood on a held-out test set using the learned topic models.

We apply LDA to the preprocessed services. The best T is determined using the Bayesian
model selection method discussed in [43]. After the topic modeling process, a set of latent
topics are learned and two types of probability distributions are generated, i.e., the service-
topic distributions and the topic-word distributions. The learned latent topics are used to
cluster the services. We create T service clusters {SC1, . . . , SCT } (a cluster for each topic).
Based on the service-topic distributions, all the services can be described in terms of a
vector, e.g., −→s = (π1, π2, . . . , πT), where each dimension πt reflects the probability of that
service being generated by sampling from topic t . Each service is supposed to be assigned
to the clusters corresponding to the topics that are related to it. As the topic distributions of
services can be notably different, it is difficult to set a proper threshold for determining the
relevant topics of all services. A simple solution is to assign each service to the cluster that
corresponds to its most relevant topic [15,16], i.e., argmaxt∈{1,...,T }πt . This single cluster
assignment may result in missing a number of services that are relevant to user queries in
service discovery. Alternatively, each service could be assigned to multiple clusters, e.g., the
clusters corresponding to the top k most relevant topics. Multiple cluster assignment will
increase the service search space and help obtain more services that are relevant to user
queries. However, it comes at the cost of an increased number of comparisons required for
answering a query [16].

4.2 Service goal extraction

A service goal is used to exhibit the intentional functionality of a service [6,45]. According
to the studies on goal modeling [31,46], we defined the service goal as a triple sg =<

sgv, sgn, sgp>, where sgv is a verb or verb phrase, which denotes the action of the service
goal, sgn is a noun or noun phrase, which denotes the entities affected by the action, and sgp
is an optional set of parameters, which denote the additional information such as how the
action affects the entity, the initial or final state of the entity.

As shown in Fig. 1, the textual description of a service generally contains several sen-
tences. Many syntactic parsers, e.g., the Stanford Parser5 and parsers in NLTK, have been
developed to recognize sentences and determine their corresponding parse trees. According
to the experimental evaluation conducted in [47], the Stanford Parser (which has also been
integrated in NLTK) can achieve better performance than several existing parsers and can
generate accurate analysis for most sentences encountered. In our approach, we used the
Stanford Parser to parse the sentences extracted from services’ textual descriptions. Gram-
matical information (i.e., Part-of-Speech (POS) tags [48]) and syntactic information (i.e.,
typed dependencies [49]) are generated for each sentence. Figure 4a depicts the POS tags
and typed dependencies of an example sentence extracted from the textual description of

5 http://nlp.stanford.edu/software/lex-parser.shtml.

123

http://nlp.stanford.edu/software/lex-parser.shtml

678 N. Zhang et al.

nsubj(provides-2, Cleartrip-1)
root(ROOT-0, provides-2)
dobj(provides-2, booking-3)
prep_for(booking-3, flights-5)
conj_and(flights-5, hotels-7)
conj_and(flights-5, trains-9)
amod(services-16, other-14)
nn(services-16, travel-15)
conj_and(booking-3, services-16)
det(world-19, the-18)
prep_across(services-16, world-19)

1. <provides, booking, null>

1. <provides, booking, {for flights, for hotels, for trains}>
2. <provides, other travel services, {across world}>

1. <provide, booking, {flight, hotel, train}>
2. <provide, travel service, {world}>

(b) Initial goals

(c) Candidate service goals

(d) Service goals(a) POS tags and typed dependencies

Cleartrip/NNS
provides/VBZ

booking/NN for/IN
flights/NNS,

hotels/NNS and/CC
trains/NNS, as/RB

well/RB as/IN
other/JJ travel/NN

services/NNS
across/IN the/DT

world/NN.

Fig. 4 Illustration of service goal extraction from an example sentence

Cleartrip Hotel: Cleartrip provides booking for flights, hotels and trains, as well as other
travel services across the world.

It is non-trivial to mine service goals from sentences due to the diversity and complexity of
sentence structures.By analyzing the typeddependencies of various sentences,wedetermined
the function of different typed dependencies (e.g., amod, conj, dobj, and prep) for service
goal extraction: some of them are used for generating the skeletons of service goals (named
as initial goals), and some are used for enriching the initial goals and discovering potential
service goals. Based on this insight, we proposed an automatic approach to extract service
goals given the grammatical and syntactic information of a sentence. The approach contains
three steps, which are briefly introduced as follows. Firstly, a set of initial goals are generated
by employing three manually crafted typed dependency patterns: (1) dobj(a, b) →<a, b,
null>, (2) nsubjpass(a, b) →<a, b, null>, and (3) prep(a, b) && V (a) →<a, b, null>. In
the third pattern, V (a) is to check whether a is a verb according to the POS tag of a, POS(a):

V (a) =
{
1, if POS(a) ∈ POSV
0, otherwise

, (4)

wherePOSV is the set of POS tags associated with verbs, e.g., {VB, VBD, VBG, VBN, VBP,
VBZ}. Moreover, a should not appear in any nsubjpass(a, b) or dobj(a, b), and if there are
several prep(a, b) dependencies related to verb a, and only the first prep(a, b) behind a can
be used for initial goal generation. For example, initial goal ig = <provides, booking, null>
is generated from the typed dependency dobj(provides-2, booking-3) in Fig. 4a. Secondly,
the initial goals are extended using typed dependencies to obtain useful information of them
and discover service goals that have not been generated. In our approach, six kinds of typed
dependencies, including prt, prep, amod, nn, conj, and appos, are leveraged in initial goal
extension. Note that prep dependencies (except those used for initial goal generation) are used
to extract prepositional phrases related to sgv and sgn parts of initial goals. For example, the
sgp part of ig, i.e., {for flights, for hotels, for trains}, is obtained from prep_for(booking-3,
flights-5), conj_and(flights-5, hotels-7), and conj_and(flights-5, trains-9). A coordinate noun
of “booking,” i.e., “services,” is obtained from conj_and(booking-3, services-16), which
contributes to generating a new service goal, as shown in Fig. 4c. By extending the initial
goals, a set of candidate service goals are obtained. Thirdly, candidate service goals are
refined by performing lemmatization using the NLTK WordNet Lemmatizer and stop word
removal using the built-in stop word list in NLTK.

The service goals of a service are obtained by collecting service goals extracted from all
the sentences in its textual description. After performing the service goal extraction approach
over all the services, a service-service goal assignment matrix SSGAM ⊆ S × SG is built to
record the service goals of each service, where S = {s1, s2, . . . , sm} is the set of services and
SG = {sg1, sg2, . . . , sgn} is the set of service goals extracted from S. Each entry SSGAMi j ∈
{0, 1}, and SSGAMi j = 1 means that service si ∈ S contains service goal sg j ∈ SG.

123

Mining and clustering service goals for RESTful service. . . 679

s2: w2 w4 w5 w6
Preprocessing Topic Modeling

based on LDA

s1: 0.7 0.05 0.15 0.07 0.03
s2: 0.4 0.45 0.05 0.09 0.01

z1 z2 z3 z4 z5

s1,
s2, ...

s2, ... s1,Service Clustering

sg1
Topic Inferring using
Folding-in Technique sg1: 0.6 0.2 0.1 0.07 0.03

sg1,
...

sg1,
...

Service-Topic
Distributions

Topic-Word
Distributions

Service Goal-Topic
Distributions

Service Goal
Clustering

s1: w1 w2 w3 w4 w5

Topic Model Trained for Services

SC1 SC2 SC3 SC4 SC5

...

...

s2

s1

SGC1 SGC2 SGC3 SGC4 SGC5

z1 z2 z3 z4 z5

Fig. 5 Illustration of the offline data process

4.3 Service goal clustering

Through our observation, many semantically similar service goals exist in the set of extracted
service goals, such as<get, real-time hotel pricing data, null>,<find, low-cost hostel, null>,
and <retrieve, accommodation detail, null>. These similar service goals can be grouped
together to provide comprehensive views of service functionalities.

Folding-in [15,16,39] is a technique used for fitting new documents into topic models.
The key of Folding-in is to infer distributions over latent topics for the new documents, which
can be realized by a similar procedure as in the training phase. In this work, the extracted
service goals are folded into the LDA model trained for services. The words of service goals
are stemmed first. Afterward, the “fold-in” process begins with randomly assigning topics
to the words of service goals and continues sampling topic assignments for the service goals
(with all of the topic assignments for the services fixed) [42]. Given enough iterations, the
topic distribution of each service goal is estimated based on a Gibbs sample as in Eq. (3).

Based on the service goal-topic distributions, we group the service goals into clusters
using a similar way as described in the service clustering. We create T service goal clusters
{SGC1, . . . , SGCT } (a cluster for each topic) and cluster the service goals using top k cluster
assignment (i.e., each service goal is assigned to each of the clusters that correspond to its top
k most relevant topics). The service goal clusters will be used to recommend similar service
goals for user queries, as described in Sect. 5.2. The top k cluster assignment with a larger
k value will produce larger service goal clusters, which will increase the number of service
goals to be recommended for user queries and thus may contribute to obtaining more service
goals that are similar to the queries. However, it requires more time to sort the recommended
goals by measuring their semantic similarities to the corresponding query.

In summary, the whole offline data process is illustrated in Fig. 5. Firstly, services in a
given registry are preprocessed. Afterward, we leverage LDA to perform topic modeling,
and group the services into clusters based on the learned service-topic distributions. For
each service goal extracted from these services, we estimate its topic distribution using the

123

680 N. Zhang et al.

Folding-in technique and then assign it to service goal clusters that correspond to its highly
relevant topics.

5 Online service discovery

As shown in Fig. 2, the online service discovery for a user query comprises three steps: topic
matching, goal recommendation, and service retrieval, which are described in this section.

5.1 Topic matching

When a user query q is sent to the service search engine, this first step is to determine a
set of topics that are relevant to q . q is first preprocessed by tokenization, stemming, and
stop word removal, and then folded into the LDA model trained for services. After sampling
the assignments of topics to words in q for a number of iterations, the topic distribution
of q is estimated based on a Gibbs sample. The top k topics with maximum probabilities
is selected as the relevant topics of q , referred to as RelTk(q). RelTk(q) will be used to
recommend similar service goals for q , as described in the next section. Moreover, RelTk(q)

will be used to reduce the service search space for q . Specifically, the candidate services for
q , referred to asCanS(q), are the services assigned to the clusters corresponding to RelTk(q),
i.e., CanS(q) = ⋃

t∈RelTk (q) SCt .

5.2 Goal recommendation and selection

Due to the lack of knowledge on the desired service functionalities, it is often difficult for users
to specify queries that can precisely represent their requirements. If no satisfactory service
is found, users have to further refine their queries and launch a next round of discovery. To
address this issue, we propose a mechanism to derive user’s immediate goals implied by their
initial queries, which will help retrieve accurate services. For a given user query q , service
goals assigned to the clusters that correspond to the relevant topics of q will be recommended,
which are referred to as RSGT (q) = ⋃

t∈RelTk (q) SGCt . From the recommendations, the user
can get a better understanding of the service functionalities related to q and select appropriate
service goals as a refined query.

As there can be a considerable number of (e.g., more than 100) service goals recom-
mended for user queries, as shown in Fig. 8b, it might be a time-consuming task for users
to select appropriate goals from the recommendations. To facilitate the user selection, the
recommended service goals can be sorted according to their similarities to the corresponding
query. Several similaritymeasures can be used for this purpose, such as Jaccard similarity and
Cosine similarity [50]. For example, Fig. 6a, b show the top ten service goals recommended
for query “search playlist” sorted using Jaccard similarity and Cosine similarity, respectively.
The bold ones are the relevant goals identified by a user. As can be seen from the figures,
the two recommendation lists are very similar: nine recommended goals are identical and
only one is different. Both of the two similarity measures fail to capture service goals that
are semantically similar to the query, e.g., <access, music playlist, null>. To overcome this
limitation, we propose a method to sort the recommended service goals by measuring their
semantic similarities to the corresponding query. Specifically, the semantic similarity of each
service goal sg ∈ RSGT (q) to query q is calculated as

123

Mining and clustering service goals for RESTful service. . . 681

1. <search, music playlist, null> -> 1.0
2. <search, playlist, null> -> 1.0
3. <search, playlist, {use site, web application}> -> 1.0
4. <offer, access, {album database, artist database, playlist database, review database, track database}> -> 0.8841
5. <view, playlist, null> -> 0.8199
6. <access, music playlist, null> -> 0.7313
7. <create, music playlist, null> -> 0.7313
8. <create, music video playlist, null> -> 0.7313
9. <generate, music playlist, {type}> -> 0.7313
10. <integrate, music playlist, {web site}> -> 0.7313

1. <search, playlist, null> -> 1.0
2. <search, music playlist, null> -> 0.6667
3. <add to, playlist, null> -> 0.3333
4. <create, playlist, null> -> 0.3333
5. <delete, playlist, null> -> 0.3333
6. <display, playlist, null> -> 0.3333
7. <listen, playlist, null> -> 0.3333
8. <manage, playlist, null> -> 0.3333
9. <play, playlist, null> -> 0.3333
10. <retrieve, playlist, null> -> 0.3333

1. <search, playlist, null> -> 1.0
2. <search, music playlist, null> -> 0.8165
3. <search, playlist, {use site, web application}> -> 0.5774
4. <add to, playlist, null> -> 0.5
5. <create, playlist, null> -> 0.5
6. <delete, playlist, null> -> 0.5
7. <display, playlist, null> -> 0.5
8. <listen, playlist, null> -> 0.5
9. <manage, playlist, null> -> 0.5
10. <play, playlist, null> -> 0.5(a) (b)

(c)

Fig. 6 Top ten service goals recommended for “search playlist” sorted using three different similarity mea-
sures: a Jaccard similarity, b Cosine similarity, and c the semantic similarity based on WordNet

GQSim(sg, q) =
∑

wi∈Wl (q) maxw j∈Wl (sg) wsim(wi , w j)∣∣Wl(q)
∣∣ , (5)

wsim(wi , w j) =
{
1, if wi equals to w j

W N Sim(wi , w j), otherwise
, (6)

where Wl(sg) and Wl(q) are the sets of words contained in sg and q , respectively, which
are obtained using the lemmatization algorithm;WNSim(wi , w j) is the semantic similarity
between the two words wi and w j in WordNet. The first branch of Eq. (6) should be per-
formed over the stems of wi and w j , so as to measure the similarity between some similar
words, e.g., “manage” and “management,” that cannot be measured using WordNet, e.g.,
WNSim(“manage,” “management”) = 0.

Figure 6c shows the top ten service goals recommended for “search playlist” sorted accord-
ing to the semantic similarities calculated using Eq. (5). We can see that some semantically
similar service goals of the query are included in the top ten of the recommendation list, which
is better than the recommendation lists shown in Fig. 6a, b. However, it can also be seen that
some service goals that are not similar to the query, e.g.,<view, playlist, null>, are sorted high
in the list, while some similar goals, e.g.,<retrieve, playlist, null>, are ranked behind. Based
on our analysis, this issue is caused by the inappropriate similarities between some words
in WordNet. The user selected service goals from the recommendations can be leveraged to
improve the recommendations for future user queries. To achieve this, we design a historical
goal recommendation repository to record service goals that have been selected by users for
queries. The repository is defined asHGRR =< U, Q,HSG >, whereU = {u1, u2, . . . , ur }
is a set of users, Q = {q1, q2, . . . , ql} is a set of queries, andHSG is a r × l matrix that stores
user selected service goals for queries. Generally speaking, a user may propose the same
query at different time and the service goals selected at each time can be different. As illus-
trated in Fig. 7, each entry of the matrix HSG is such a set of couples HSGi j = {(sgk, nk)},
where sgk is a service goal that has been selected by user ui ∈ U for query q j ∈ Q and
nk > 0 is the total selection number of sgk . In Fig. 7, “t1 : SG(ui , q j) = {sg1, sg2, sg3}”

123

682 N. Zhang et al.

q1 q2 ... ql

HSG11 HSG12 ... HSG1l

HSG21 HSG22 ... HSG2l

...

HSGr1 HSGr2 ... HSGrl

u1

u2...

ur HSGij = {(sg1, 3), (sg2, 2), (sg3, 3), (sg4, 1)}

t1: SG(ui, qj) = {sg1, sg2, sg3}
t2: SG(ui, qj) = {sg1, sg2, sg3}
t3: SG(ui, qj) = {sg1, sg3, sg4}

Fig. 7 Illustration of HGRR

means that at time t1, user ui launched a service discovery task with query q j and selected
three service goals {sg1, sg2, sg3} from the recommendations.

HGRR are used to produce better service goal recommendations for user queries. When
a user u sends a query q to the service search engine, at the stage of goal recommendation,
a set of queries in Q that are similar to q are obtained as

SimQ(q) = {
q j |q j ∈ Q ∧ QSim(q j , q) ≥ θ

}
, (7)

where QSim(q j , q) is the semantic similarity of query q j to q computed using Eq. (8), and
θ ∈[0, 1] is a threshold used to determine the queries that are similar to q .

QSim(q j , q) =
∑

wi∈Wl (q) maxw j∈Wl (q j)
wsim

(
wi , w j

)
∣∣Wl(q)

∣∣ , (8)

where Wl(q j) is the set of words contained in q j , which are obtained using the lemma-
tization algorithm. The service goals that have been selected by users for the similar
queries SimQ(q) will be recommended for q , which are referred to as RSGH (q) =⋃

ui∈U,q j∈SimQ(q)

{
sgk |(sgk, nk) ∈ HGRi j

}
.

It is worth noting that each query q j ∈ SimQ(q)may have been proposed by various users
and the service goals that have been selected by the current user u will be more preferred
by himself. Moreover, the service goals that have been frequently selected could be more
preferred by u. Based on the analysis, the importance of each service goal sgk ∈ RSGH (q)

can be measured according to three factors: (1) the semantic similarity of the query for
which sgk was selected to q , (2) the user who selected sgk , and (3) the selection number
of sgk .

For each query q j ∈ SimQ(q), the selection number of sgk is divided into two parts: (1)
the number of sgk selected by u, denoted as nu,q j (sgk), and (2) the number of sgk selected
by other users except u, denoted as n−u,q j (sgk), as follows

nu,q j (sgk) = nk, (sgk, nk) ∈ HGRi j ∧ ui = u, (9)

n−u,q j (sgk) =
∑

nk, (sgk, nk) ∈ HGRi j ∧ ui ∈ U − {u} . (10)

The importance of sgk derived from the historical goal recommendation results of q j is
calculated as

123

Mining and clustering service goals for RESTful service. . . 683

IH
(
q j → sgk

) = QSim(q j , q) × [
λ × log2

(
1 + nu,q j (sgk)

)
+ (1 − λ) × log2

(
1 + n−u,q j (sgk)

)]
, (11)

where λ ∈ [0, 1] is a parameter to balance the weights of nu,q j (sgk) and n−u,q j (sgk).
The importance of sgk is obtained by accumulating the importance derived from the

historical goal recommendation results of all queries in SimQ(q):

IH (sgk) =
∑

q j∈SimQ(q)
IH

(
q j → sgk

)
. (12)

IH (sgk) is then normalized to (0, 1]:

IH (sgk) = IH (sgk)

maxsgi∈RSGH (q) IH (sgi)
. (13)

The service goal list recommended for q is finally generated by incorporating the semantic
similarities of services goals to q and the importance of service goals measured based on
HGRR. The set of service goals to be recommended for q are

RSG(q) = RSGT (q) ∪ RSGH (q). (14)

The recommendation priority of each service goal sg ∈ RSG(q) is calculated as

RP(sg) = ζ × GQSim(sg, q) + (1 − ζ) × IH (sg), (15)

where ζ ∈ [0, 1] is a parameter to balance between the semantic similarity of sg to q and the
importance of sg computed based on HGRR.

5.3 Service retrieval

In this step, a set of relevant services are retrieved for query q by matching the user selected
service goals for q , referred to as SG(q), with service goals of candidate services inCanS(q).
For each service si ∈ CanS(q), the service goals that can satisfy any service goal in SG(q)

are obtained as

SG (si 	 q) = {
sgi ∈ SG(si)|∃sg j ∈ SG(q),Ws(sg j) ⊆ Ws(sgi)

}
, (16)

where SG(si) is the set of service goals of si , SG(si) = {sgk |SSGAMik = 1} ;Ws(sgi) and
Ws(sg j) are the sets of words contained in service goals sgi and sg j , respectively, which
are obtained using the stemming algorithm. The reason for stemming the words of service
goals is that stems can contribute to matching morphologically similar goals, e.g.,<manage,
playlist, null> and <provide, playlist management, null>.

A set of relevant services are then retrieved for q as

RelS(q) = {si |SG (si 	 q) �= ∅} . (17)

The goal-based service discovery approach (referred to asGoSD)described above can retrieve
accurate services. However, some relevant services will be missed due to two main reasons.
On one hand, some useful service goals cannot be extracted from the textual descriptions
of services, in particular in the following cases: (1) service goals that are expressed in noun
phrases, e.g., “photo uploading,” and (2) informal and complex sentences that are incorrectly
parsed using the Stanford Parser. On the other hand, some similar service goals of user queries
are not included or sorted high in the recommendation lists and in turn are not selected by users
for service retrieval. To overcome the shortcoming of GoSD, we propose a hybrid service
discovery approach (referred to as HybridSD) by integrating GoSD with two popular service

123

684 N. Zhang et al.

discovery approaches: the keyword-based approach and a probabilistic semantic approach
based on LDA, which are described as follows.

– Keyword-based service discovery (referred to as KWSD): In this approach, the available
services were preprocessed by tokenization, stemming, and stop word removal, and then
represented as vectors using the TF-IDF technique [51]. For a given user query q , it was
preprocessed using the same steps above and also represented as a TF-IDF vector (using
the IDF statistical information of services). The words of q that were not contained in
the services were left out. We then calculated the Cosine similarity between each service
vector −→s and the query vector −→q using

CSim(
−→s ,

−→q) =
−→s · −→q

‖−→s ‖‖−→q ‖ =
∑v

i=1
−→si · −→qi√∑v

i=1
−→s 2
i

∑v
i=1

−→q 2
i

(18)

where v is the dimension number of −→s and −→q .
– LDA-based service discovery (referred to asLDASD):Topicmodels, e.g., LDA,havebeen

widely used for service modeling and discovery [15–18]. We realized a service discovery
approach based on LDA as follows. After modeling the available services using LDA,
the topic distribution of each service was represented as a vector−→s = (π1, π2, . . . , πT),
where each dimension πt is the probability of the service being generated by sampling
from topic t . For a given user query q , it was preprocessed by tokenization, stemming,
and stop word removal, and folded into the LDA model trained for services. The topic
distribution of q was also represented as a vector in the topic space. We then calculated
the Cosine similarity between each service vector −→s and the query vector −→q using Eq.
(18).

In HybridSD, for a given user query q , the user selected service goals SG(q) at the stage
of goal recommendation are employed to improve KWSD and LDASD. Specifically, a new
query is built by collecting the words of all service goals in SG(q) and then used as the
input of KWSD and LDASD. The improved approaches are referred to as KWSD+GR
and LDASD+GR, respectively. The detail of HybridSD is given in Algorithm 1. For each
candidate service si ∈ CanS(q), the similarity between si and q is computed using GoSD,
KWSD+GR, and LDASD+GR, respectively. The overall similarity between si and q is
then obtained by aggregating the three similarities using

OSim(si , q) = μ1 × GSim (si , q) + μ2 × KSim (si , q) + μ3 × LSim (si , q) , (19)

GSim(si , q) =
{
1, if si ∈ RelS(q)

0, otherwise
, (20)

where GSim(si , q), KSim(si , q), and LSim(si , q) are the similarities between si and q com-
puted using GoSD, KWSD+GR, and LDASD+GR, respectively; μ1, μ2, and μ3 are three
coefficients for aggregating the three similarities.

123

Mining and clustering service goals for RESTful service. . . 685

Algorithm 1. HybridSD
Input: user query q; parameters for topic matching and goal recommendation: , , ,

and ; coefficients for aggregating three partial similarities: , and .
Output: relevant service list for q, RelSList.
1. RelSList ;
2. RelTk(q) TopicMatching(); // perform topic match ing for q and select the top k

most relevant topics of q
3. CanS(q) ; // the candidate services for q
4. SG(q) GoalRecommendation(); // perform goal recommendation for q and

the user select a set of service goals from the recommendations
5. Build a new query nq by collecting the words of all service goals in SG(q);
6. SSMap ; // a map for holding the similarities of candidate services to q
7. for si CanS(q) do
8. gsim compute the similarity between si and q using GoSD based on SG(q);
9. ksim compute the similarity between si and nq using KWSD;
10. lsim compute the similarity between si and nq using LDASD;
11. osim gsim + ksim + lsim; // compute the overall similarity of

si to q
12. SSMap.put(si, osim);
13. RelSList Sort the services in SSMap according to their similarities to q;
14. return RelSList;

6 Experiments and analysis

We conducted a series of experiments to evaluate the proposed goal recommendation mech-
anism and service discovery approaches. All experiments were developed in Java and carried
out on a PC with Intel(R) Core(TM)2 T7300 2GHz CPU, 2GB RAM, and running Microsoft
Windows 7 x86.

6.1 Experimental dataset

Wehave crawled the descriptive data (including name, tags, and textual description) of 10,168
services belonging to 66 categories from PW on April 14, 2014. An experimental dataset
of 1249 services was constructed from seven categories, as depicted in Table 1. The total
numbers of services, sentences, words, and typed dependencies (including nsubjpass, dobj,
prep, prt, amod, nn, conj, and appos) in each category are listed. Please note that two kinds
of prep dependencies are presented separately and their differences have been introduced in
Sect. 4.2. As preparation, we performed the three offline data process steps described in Sect.
4 over the experimental dataset as follows.

– Service clustering based on topic models We preprocessed the descriptive data of each
service by tokenization, stemming, and stop word removal, and applied LDA to the
services using different numbers of latent topics (i.e., T), ranging from 20 to 50. The
Dirichlet prior parameters were set as α = 50/T and β = 0.1 like [32,43]. For each
T , we discarded the first 2000 Gibbs samples to make sure that the “burn-in” period
was passed. By computing the posterior probabilities of trained LDA models using the
method discussed in [43], we chose the best T as 36, which led to the maximum posterior

123

686 N. Zhang et al.

Table 1 Statistics of the experimental dataset

Media
management

Music Photos Transportation Travel Video Weather

#services 64 209 254 177 227 232 86

#sentences 264 854 1058 734 971 1011 348

#words 4760 15,889 19,231 13,913 18,219 18,027 6799

#nsubjpass 43 108 133 86 131 138 51

#dobj 284 936 1257 796 1067 1188 368

#prep (used for initial
goal generation)

24 107 101 82 155 93 33

#prt 2 18 25 18 20 17 4

#amod 280 958 1147 861 1096 1194 500

#nn 403 1395 1649 1576 1857 1620 760

#conj 381 1225 1285 945 1316 1308 487

#appos 35 86 110 104 109 108 58

#prep (used for initial
goal extension)

408 1302 1645 1247 1610 1442 646

probability. TheLDAmodel trained using T = 36was selected for our experiments. Based
on the service-topic distributions,we clustered the services using top k cluster assignment.
Figure 8a depicts the distribution of the size of service clusters generated using different
k values, ranging from 1 to 5. As can be seen, a larger k leads to larger service clusters.

– Service goal extraction Service goals contained in the textual description of each services
were extracted using our service goal extraction approach proposed in [6], resulting in a
service-service goal assignment matrix. In total, 4857 service goals were extracted from
the services.

– Service goal clustering The extracted service goals were folded into the LDA model
trained for services. We ran 2000 iterations to do LDA inference. Based on the inferred
service goal-topic distributions, we clustered the service goals using top k cluster assign-
ment. Figure 8b depicts the distribution of the size of service goal clusters generated
using different kvalues, ranging from 1 to 5. A larger k also leads to larger service goal
clusters.

To evaluate the proposed goal recommendation mechanism and service discovery
approaches, we conducted a series of empirical experiments on a set of queries by recruit-
ing three master students. As the manual creation of the ground truth of relevant service
goals and relevant services for a query is an expensive process, we just randomly selected
ten queries, as presented in Table 2, for evaluation. For each query, the three students first
determined the relevance of services and service goals independently by labeling each of
them as 0 (irrelevant) or 1 (relevant); afterward they discussed the debatable ones together to
reach an agreement on the final ground truth of relevant services and relevant service goals.
The statistics of the ground truth on ten queries is presented in Table 2.

Based on the ground truth of each query q , we evaluated the ranking list of recommended
service goals and retrieved services produced for q using three popular metrics: P@N (pre-
cision), R@N (recall), and MAP@N (mean average precision).

123

Mining and clustering service goals for RESTful service. . . 687

Fig. 8 Distribution of the size of service clusters and service goal clusters generated using different top k
cluster assignment; k ranges from 1 to 5. a Distribution of the size of service clusters. b Distribution of the
size of service goal clusters

P@N =
∣∣Sr ∩ Sg

∣∣
|Sr | , R@N =

∣∣Sr ∩ Sg
∣∣∣∣Sg∣∣ , MAP@N = 1∣∣Sg∣∣

∑N

i=1

(ni
i

· I (i)
)

(21)

where Sr is the set of the top N recommended service goals (or retrieved services), Sg is the
set of relevant service goals (or services) in the ground truth of q , ni represents the number
of relevant service goals (or services) in Sg that exist in the first i of the recommended list,
and I (i) indicates whether the service goal (or service) at the ranking position i is in Sg .

6.2 Evaluation of goal recommendation

For each query q in Table 2, we preprocessed it by tokenization and stemming, and folded
it into the LDA model trained for services. We ran 100 iterations to perform LDA inference
for q . The top k topics with maximum probabilities were selected as relevant topics of q ,
RelTk(q). Afterward, service goals assigned to the clusters (generated using top k cluster
assignment) that correspond to RelTk(q) were sorted according to their semantic similarities
to q computed using Eq. (5) and recommended. Based on the relevant service goals of q in
the ground truth, we measured the performance of the recommended service goal list using
P@N,R@N, and MAP@N. Finally, we measured the overall P@N,R@N, and MAP@N
performance of goal recommendation mechanism with respect to the average of ten queries’
performance results.

We conducted the goal recommendation mechanism based on the service goal clusters
generated using different k settings (varied from 1 to 5) and the corresponding RelTk(q).

123

688 N. Zhang et al.

Table 2 Experimental queries and statistics of the ground truth

Query ID Description #Relevant service goals #Relevant services

1 Book hotel 24 44

2 Create video 38 39

3 Edit video 14 14

4 Find airport 22 22

5 Forecast weather 19 39

6 Get hotel 57 57

7 Publish video 6 14

8 Search playlist 12 16

9 Share music 14 29

10 Upload photo 27 64

Table 3 Performance of goal recommendation using different k settings

k Metric N

5 10 15 20 25 30 35 40

1 P@N 0.94 0.81 0.7 0.61 0.532 0.4667 0.4057 0.365

R@N 0.281 0.4421 0.538 0.6027 0.6449 0.665 0.6685 0.6878

MAP@N 0.4577 0.7846 0.9887 1.1315 1.2204 1.2741 1.286 1.3048

2 P@N 0.92 0.84 0.72 0.665 0.6 0.54 0.4829 0.4325

R@N 0.2867 0.4668 0.566 0.6657 0.7273 0.7745 0.7978 0.81

MAP@N 0.4348 0.7948 1.0105 1.2104 1.3475 1.4423 1.4925 1.5138

3 P@N 0.9 0.82 0.7 0.65 0.588 0.5333 0.4743 0.42

R@N 0.2841 0.457 0.5544 0.6594 0.7154 0.7643 0.7793 0.7852

MAP@N 0.4268 0.7693 0.9743 1.1721 1.3112 1.4113 1.4645 1.4748

4 P@N 0.86 0.82 0.7 0.65 0.584 0.5367 0.4771 0.4225

R@N 0.2603 0.4665 0.5694 0.6743 0.7257 0.781 0.7959 0.8018

MAP@N 0.394 0.747 0.9529 1.1479 1.2808 1.3913 1.4442 1.4543

5 P@N 0.86 0.82 0.7 0.65 0.584 0.53 0.4771 0.42

R@N 0.2603 0.4665 0.5694 0.6743 0.7257 0.7719 0.7959 0.8001

MAP@N 0.394 0.747 0.9529 1.1479 1.2808 1.3842 1.4432 1.447

Table 3 presents the overall P@N,R@N, and MAP@N performance achieved with different
k values. P@N is higher than 0.6whenN ≤ 20,meaning thatmost of the top 20 recommended
service goals are relevant to queries. R@N is higher than 0.68 when N = 40, indicating that
most of the relevant service goals of queries are recommended by top 40. In most cases,
P@N,R@N, and MAP@N achieved using k = 2 are better than those achieved using
k = 1. This can be explained by the fact that some relevant service goals outside the most
relevant clusters of queries are recommended by increasing the search scope of service
goals. Moreover, as k becomes larger than 2, all the three metrics decrease, which is due to
the fact that many irrelevant service goals of queries are recommended by exploring three or
more clusters and are sorted highly in the recommendation lists on account of inappropriate
semantic similarities computed using Eq. (5).

123

Mining and clustering service goals for RESTful service. . . 689

Table 4 Time cost of goal
recommendation on ten queries
using different k settings

k 1 2 3 4 5

Time (ms) 62 119 204 398 470

Table 4 presents the total time cost of goal recommendation on ten queries under different
k settings. It can be seen that the time cost increases with the increase of k. This is because
that a larger k leads to a larger set of service goals recommended for queries; and more time
is required for sorting the recommended goals by measuring their semantic similarities to
the corresponding query. Although the time cost produced with k = 2 is higher than that
produced with k = 1, it is much lower than those produced with k = 3, 4, 5.

Based on the above analysis, the goal recommendation mechanism achieves the best
performance with relatively low time cost under the setting of k = 2; therefore, we chose
k = 2 for our experiments. For the sake of simplicity, service clusters generated using top
two cluster assignment were subsequently used for reducing the service search space.

More specifically, Table 5 presents the performance of goal recommendation on each of
the ten queries using k = 2. For most queries, P@N achieved at top 20 is higher than 0.6 and
R@N achieved at top 40 is higher than 0.8, which are consistent with the overall performance
presented in Table 3. Moreover, there are some low P@N and low R@N cases. Based on our
analysis, the low P@N on some queries, e.g., “publish video,” is caused by either (1) only
a few relevant service goals are identified by students for the queries, or (2) many irrelevant
service goals of the queries are sorted high in the recommendation list. The low R@N on
query “get hotel” is mainly caused by the fact that a considerable number of (more than 40)
relevant service goals are identified by students for the query.

As discussed in Sect. 5.2, service goals recommended for user queries can be sorted using
different similaritymeasures such as Jaccard similarity (JSim), Cosine similarity (CSim), and
the semantic similarity based on WordNet (WNSim). Moreover, we build a historical goal
recommendation repository (HGRR) to store the service goals selected by users for queries
and design a hybrid goal recommendation mechanism by incorporating the recommendation
list generated using WNSim and the recommendation list generated based on HGRR. We
conducted the goal recommendation mechanisms using three different similarity measures
(i.e., JSim, CSim, and WNSim) and the hybrid mechanism for each of the queries in Table
2. These mechanisms are referred to as JSimGR, CSimGR, WNSimGR, and HybridGR,
respectively. All themechanismswere conducted based on the service goal clusters generated
using top two cluster assignment. For HybridGR, HGRR was built by collecting relevant
service goals contained in the top 40 of the recommendation lists generated usingWNSimGR
with k = 2. Note that the ground truth of relevant service goals of each query is shared by
the three students in HGRR. Some parameters were set as follows.

The parameter θ used for determining the queries inHGRR. Q that are similar to a current
user query was set as 0.7 according to our manual analysis of all queries over the dataset. The
parameter ζ is to balance the weights of the semantic similarity computed usingWNSim and
the importance measured based on HGRR. We set ζ = 0.5 because we only want to check
the performance of HybridGR under a naïve setting of these two factors. The parameter λ

controls the weights between the number of service goals selected by the current user and
the number of service goals selected by other users in the important measurement of service
goals recommended based on HGRR. Since the service goals that have been selected by the
current user would be more preferred by himself, λ should be (0.5, 1]. We ran a grid search
on (0.5, 1] with a step size to be 0.1, and selected λ = 0.8 that maximizes the performance of
HybridGR.

123

690 N. Zhang et al.

Ta
bl
e
5

Pe
rf
or
m
an
ce

of
go

al
re
co
m
m
en
da
tio

n
on

te
n
qu

er
ie
s
us
in
g
k

=
2

Q
ue
ry

ID
N

=
10

N
=

20
N

=
30

N
=

40

P@
N

R
@
N

M
A
P@

N
P@

N
R
@
N

M
A
P@

N
P@

N
R
@
N

M
A
P@

N
P@

N
R
@
N

M
A
P@

N

1
1.
0

0.
41

67
1.
0

0.
7

0.
58

33
1.
38

24
0.
46

67
0.
58

33
1.
38

24
0.
37

5
0.
62

5
1.
42

4

2
0.
9

0.
23

68
0.
70

71
0.
95

0.
5

1.
64

02
0.
93

33
0.
73

68
2.
48

28
0.
77

5
0.
81

58
2.
76

4

3
1.
0

0.
71

43
1.
0

0.
55

0.
78

57
1.
1

0.
36

67
0.
78

57
1.
1

0.
27

5
0.
78

57
1.
1

4
0.
7

0.
31

82
0.
46

75
0.
55

0.
5

0.
73

52
0.
5

0.
68

18
0.
94

93
0.
47

5
0.
86

36
1.
15

28

5
1.
0

0.
52

63
1.
0

0.
85

0.
89

47
1.
64

7
0.
6

0.
94

74
1.
72

88
0.
45

0.
94

74
1.
72

88

6
0.
9

0.
15

79
0.
9

0.
85

0.
29

82
1.
55

16
0.
7

0.
36

84
1.
88

78
0.
6

0.
42

11
2.
07

64

7
0.
5

0.
83

33
0.
5

0.
25

0.
83

33
0.
5

0.
16

67
0.
83

33
0.
5

0.
12

5
0.
83

33
0.
5

8
0.
5

0.
41

67
0.
48

33
0.
4

0.
66

67
0.
59

35
0.
36

67
0.
91

67
0.
70

32
0.
27

5
0.
91

67
0.
70

32

9
1.
0

0.
71

43
1.
0

0.
65

0.
92

86
1.
27

24
0.
43

33
0.
92

86
1.
27

24
0.
32

5
0.
92

86
1.
27

24

10
0.
9

0.
33

33
0.
89

0.
9

0.
66

67
1.
68

2
0.
86

67
0.
96

3
2.
41

61
0.
65

0.
96

3
2.
41

61

123

Mining and clustering service goals for RESTful service. . . 691

Fig. 9 P@N of goal recommendation mechanisms

Fig. 10 R@N of goal recommendation mechanisms

Figures 9, 10, and 11 show the overall P@N,R@N, andMAP@Nperformance of four goal
recommendation mechanisms, respectively. In terms of all the three metrics, JSimGR and
CSimGR are quite close, and WNSimGR is much better than those two mechanisms, which
is caused by the fact that WNSimGR can sort semantically relevant service goals of queries
highly in the recommendation listswhile JSimGRandCSimGRcannot.Moreover,HybridGR
is better than WNSimGR, which demonstrates that the service goal recommendation lists
generated usingWNSimGR can be improved by leveragingHGRR, namely the service goals
that have been selected by users for queries.

123

692 N. Zhang et al.

Fig. 11 MAP@N of goal recommendation mechanisms

6.3 Evaluation of service discovery

As stated previously, existing RESTful service discovery approaches are mainly based on
hRESTS; and it is difficult to construct hRESTS for publicly registered services. Moreover,
it is also difficult to find suitable ontologies to semantically annotate services in PW, which
makes ontology-based service discovery hard to be an approach for comparison. Therefore,
we compared the proposed goal-based service discovery approach (GoSD) and hybrid ser-
vice discovery approach (HybridSD) with two well-known approaches, i.e., keyword-based
service discovery (KWSD) and LDA-based service discovery (LDASD). The details of these
approaches are given in Sect. 5.3. Service clusters generated using the top two cluster assign-
ment were used for reducing the service search space. The relevant service goals contained
in the top 40 recommendations of WNSimGR were used for GoSD and HybridSD. For
HybridSD, we set the parameters in Eq. (19) as μ1 = μ2 = μ3 = 1, such that the three
components were equally treated.

We conducted the four service discovery approaches for each query in Table 2. For each
service discovery approach, the performance of the service list retrieved for each query q was
measured using P@N, R@N, and MAP@N based on the ground truth of relevant services
of q; and the overall P@N, R@N, and MAP@N performance of the approach was then
measured with respect to the average of ten queries’ performance results.

Figures 12, 13, and 14 show the overall P@N, R@N, and MAP@N performance of four
service discovery approaches, respectively. In terms of MAP@N, the order is HybridSD >

GoSD > KWSD > LDASD. In terms of P@N, GoSD is higher than 0.9 and better than
the other three approaches in most cases, indicating that GoSD can retrieve more accurate
services for queries. Because users often expect to quickly find services of interest, P@N
should be as high as possible. From this perspective, GoSD will be more preferred by users.
In terms of R@N, GoSD outperforms KWSD and LDASD when N ≤ 30. As N becomes
larger than 30, R@N of GoSD stabilizes, which indicates that no more services relevant to
queries are retrieved using this approach. Through analysis, this issue is mainly caused by

123

Mining and clustering service goals for RESTful service. . . 693

Fig. 12 P@N of service discovery approaches

Fig. 13 R@N of service discovery approaches

two reasons: (1) some useful service goals fail to be extracted from the textual descriptions
of services, as explained in Sect. 5.3, and (2) some relevant service goals of queries are
not recommended by top 40 and thus are not used for GoSD. R@N of HybridSD is higher
than that of GoSD when N > 15, because some relevant services missed by GoSD are
retrieved by the other two complementary approaches, i.e., KWSD+GR and LDASD+GR.
Meanwhile, P@N of HybridSD is lower than GoSD due to the irrelevant services introduced
by KWSD+GR and LDASD+GR.

In the above experiments, the service search space was restricted to the service clusters
that correspond to the top two relevant topics of each query. We also conducted service
discovery approaches for the queries in Table 2 with a search over all services. Tables 6, 7,
and 8 present the overall P@N,R@N, and MAP@N performance of four service discovery

123

694 N. Zhang et al.

Fig. 14 MAP@N of service discovery approaches

Table 6 P@N of service discovery based on reduced and full service search spaces

Approach Service searching
space

N

5 10 15 20 25 30 35 40

GoSD Reduced 0.94 0.9533 0.9456 0.944 0.939 0.9423 0.9402 0.9402

Full 0.98 0.9333 0.9474 0.9458 0.9488 0.9441 0.9408 0.9423

KWSD Reduced 0.62 0.56 0.56 0.555 0.524 0.5 0.48 0.46

Full 0.62 0.56 0.5533 0.545 0.52 0.5067 0.48 0.4675

LDASD Reduced 0.44 0.46 0.4533 0.43 0.4 0.3933 0.38 0.3525

Full 0.44 0.46 0.4533 0.43 0.4 0.3933 0.38 0.3525

HybridSD Reduced 0.96 0.91 0.84 0.76 0.7 0.6433 0.6029 0.5725

Full 0.96 0.91 0.8533 0.77 0.712 0.6667 0.6229 0.595

Table 7 R@N of service discovery based on reduced and full service search spaces

Approach Service search
space

N

5 10 15 20 25 30 35 40

GoSD Reduced 0.182 0.3434 0.4342 0.4688 0.4853 0.5059 0.511 0.511

Full 0.1891 0.3346 0.4449 0.4864 0.507 0.5235 0.54 0.553

KWSD Reduced 0.1094 0.1908 0.2795 0.3669 0.4246 0.4848 0.5367 0.5794

Full 0.1094 0.1908 0.2772 0.3601 0.4206 0.4875 0.5299 0.5929

LDASD Reduced 0.0618 0.1392 0.2041 0.2648 0.3065 0.3598 0.3994 0.4192

Full 0.0618 0.1392 0.2041 0.2648 0.3065 0.3598 0.3994 0.4192

HybridSD Reduced 0.1874 0.3391 0.441 0.508 0.5704 0.6145 0.6613 0.7091

Full 0.1874 0.3391 0.4518 0.5191 0.5857 0.6396 0.6815 0.7346

123

Mining and clustering service goals for RESTful service. . . 695

Table 8 MAP@N of service discovery based on reduced and full service search spaces

Approach Service search
space

N

5 10 15 20 25 30 35 40

GoSD Reduced 0.1673 0.3229 0.4099 0.443 0.4582 0.4769 0.4813 0.4813

Full 0.1877 0.3281 0.4319 0.472 0.491 0.5063 0.5212 0.533

KWSD Reduced 0.1056 0.1556 0.2149 0.267 0.2987 0.3292 0.356 0.3796

Full 0.1056 0.1553 0.213 0.2614 0.2976 0.3344 0.3578 0.3861

LDASD Reduced 0.0454 0.0861 0.1236 0.1525 0.1727 0.1961 0.2135 0.2237

Full 0.0454 0.0861 0.1236 0.1525 0.1727 0.1961 0.2135 0.2237

HybridSD Reduced 0.1841 0.3298 0.427 0.488 0.5382 0.572 0.6047 0.6343

Full 0.1841 0.3298 0.4366 0.4985 0.552 0.5945 0.6271 0.6614

Table 9 Time cost of service discovery on ten queries based on reduced and full service search spaces

Service search space GoSD KWSD LDASD HybridSD

Time (ms) Reduced 321 329 584 1234

Full 714 548 1051 2313

approaches based on the reduced and full service search spaces, respectively. For GoSD,
KWSD, and HybridSD, the performance achieved at top 40 based on the full service search
space is a little better than that achieved based on the reduced service search space. This is
because that some relevant services of queries outside the top two service clusters are retrieved
over all services. However, as presented in Table 9, it requires more time to compare each of
the ten queries to all services.

It has been demonstrated that the proposed goal recommendation mechanism can effec-
tively recommend relevant service goals for user queries and that the user selected service
goals can help retrieve relevant services accurately. Moreover, we validated the contribution
of the goal recommendation mechanism to existing service discovery approaches. Specif-
ically, we conducted the original KWSD and LDASD and their improved versions (i.e.,
KWSD+GR and LDASD+GR) for ten queries in Table 2. For each query, a new query was
built by collecting the words of relevant service goals contained in the top 40 of service goal
recommendation list produced usingWNSimGR, and then used as the input of KWSD+GR
and LDASD+GR, as described in Sect. 5.3. Table 10 presents the overall P@N,R@N, and
MAP@N performance of these approaches. In terms of all metrics, the improved approaches
perform better than their original versions in most cases. Specifically, P@N,R@N, and
MAP@N of KWSD are improved, on average, by 13.35, 15.93, and 25.18%, respectively.
P@N,R@N, andMAP@Nof LDASD are improved, on average, by 4.49, 7.27, and 17.32%,
respectively. These results show that the proposed goal recommendationmechanism can help
improve the search results of KWSD and LDASD.

7 Conclusions

This paper reports our continuous efforts on RESTful service discovery. In our prior work [6],
we proposed an approach to extract service goals from the textual descriptions of RESTful

123

696 N. Zhang et al.

Table 10 Performance of service discovery improved by goal recommendation

Approach Metric N

5 10 15 20 25 30 35 40

KWSD P@N 0.62 0.56 0.56 0.555 0.524 0.5 0.48 0.46

R@N 0.1094 0.1908 0.2795 0.3669 0.4246 0.4848 0.5367 0.5794

MAP@N 0.1056 0.1556 0.2149 0.267 0.2987 0.3292 0.356 0.3796

KWSD+GR P@N 0.74 0.68 0.6667 0.615 0.556 0.54 0.5257 0.5175

R@N 0.1392 0.2526 0.3421 0.4147 0.4559 0.5186 0.5799 0.6375

MAP@N 0.1305 0.2158 0.2839 0.3308 0.3575 0.3949 0.4303 0.4656

LDASD P@N 0.44 0.46 0.4533 0.43 0.4 0.3933 0.38 0.3525

R@N 0.0618 0.1392 0.2041 0.2648 0.3065 0.3598 0.3994 0.4192

MAP@N 0.0454 0.0861 0.1236 0.1525 0.1727 0.1961 0.2135 0.2237

LDASD+GR P@N 0.52 0.52 0.4533 0.42 0.4 0.39 0.3857 0.375

R@N 0.0769 0.1563 0.2115 0.2609 0.3201 0.3682 0.4098 0.4606

MAP@N 0.0611 0.1126 0.1441 0.1696 0.1932 0.2154 0.2364 0.2527

services. In this work, we propose an approach for RESTful service discovery by leveraging
the mined service goal knowledge. We use topic models, e.g., LDA, to group the available
services into clusters. The service goals extracted from the services’ textual descriptions are
also clustered by folding them into the topic model trained for services. In service discovery,
service clusters are used for reducing the service search space, in order to improve the effi-
ciency. We particularly design a mechanism to address the incompleteness of user queries by
recommending semantically similar service goals based on the service goal clusters. Finally,
relevant services are retrieved by matching user selected service goals with those of can-
didate services. Moreover, we propose a hybrid service discovery approach by integrating
the goal-based service discovery approach with two popular service discovery approaches:
the keyword-based approach and a probabilistic semantic approach based on LDA. Experi-
ment results conducted on a real-world service dataset demonstrate the effectiveness of the
proposed approaches.

There are still some limitations in our proposed approach. Firstly, our approach cannot
cope with the case that all sentences express a goal. This issue might be solved by ana-
lyzing more typed dependencies and identifying templates within sentences. Secondly, our
approach cannot deal with the service goals represented as noun phrases, e.g., “hotel book-
ing” and “order management.” Thirdly, some useful typed dependencies, e.g., pobj, mark,
and xcomp, have not been considered by our approach, which may result in the missing of
some meaningful service goals.

In the future, we will improve the proposed approach by solving these limitations In
addition,wewill attempt to establish semantic relationships among service goals by exploring
the structures of mashups composed by APIs, and external ontologies or knowledge bases
(e.g., Wikipedia), to promote goal recommendation. We also plan to apply the proposed
approaches in our service supermarket CloudCRM [52].

Acknowledgements This research was supported by the National Basic Research Program of China (No.
2014CB340404), the National Key Research and Development Program of China (No. 2017YFB1400602),
and the National Natural Science Foundation of China (Nos. 61672387, 61702378, 61402150, and 61562073),
the Strategic Team-Building of Scientific and Technological Innovation in Hubei Province, and the Natural
Science Foundation of Hubei Province of China (No. 2017CKB894).

123

Mining and clustering service goals for RESTful service. . . 697

References

1. Hu Y, Peng Q, Hu X et al (2015) Time aware and data sparsity tolerant web service recommendation
based on improved collaborative filtering. IEEE Trans Serv Comput 8(5):782–794

2. John D, Rajasree MS (2013) RESTDoc: describe, discover and compose RESTful semantic web services
using annotated documentations. Int J Web Semant Technol 4(1):37–49

3. Fielding RT (2000) Architectural styles and the design of network-based software architectures. PhD
thesis, University of California, Irvine

4. Maleshkova M, Pedrinaci C, Domingue J (2010) Investigating web APIs on the World Wide Web. In:
Proceedings of the IEEE European conference on web services, pp 107–114

5. JiangW, LeeD, Hu S (2012) Large-scale longitudinal analysis of SOAP-based andRESTful web services.
In: Proceedings of the IEEE international conference on web services, pp 218–225

6. Wang J, Zhang N, Zeng C et al (2013) Towards services discovery based on service goal extraction and
recommendation. In: Proceedings of the IEEE international conference on services computing, pp 65–72

7. Wang Y, Stroulia E (2003) Flexible interface matching for web service discovery. In: Proceedings of the
international conference on web information systems engineering, pp 147–156

8. Plebani P, Pernici B (2009) URBE: web service retrieval based on similarity evaluation. IEEE Trans
Knowl Data Eng 21(11):1629–1642

9. Liu F, Shi Y, Yu J et al (2010) Measuring similarity of web services based on WSDL. In: Proceedings of
the IEEE international conference on web services, pp 155–162

10. Kokash N, Heuvel WJVD, D’Andrea V (2006) Leveraging web services discovery with customizable
hybrid matching. In: Proceedings of the international conference on service-oriented computing, pp 522–
528

11. Paulraj D, Swamynathan S (2011) Content based service discovery in semantic web services usingWord-
Net. In: Proceedings of the international conference on advanced computing, network and security, pp
48–56

12. Paliwal AV, Shafiq B, Vaidya J et al (2012) Semantics-based automated service discovery. IEEE Trans
Serv Comput 5(2):260–275

13. Ma SP, Li CH, Tsai YY et al (2013) Web service discovery using lexical and semantic query expansion.
In: Proceedings of the IEEE international conference on e-business engineering, pp 423–428

14. Cong Z, Fernandez A, Billhardt H et al (2015) Service discovery acceleration with hierarchical clustering.
Inf Syst Front 17(4):799–808

15. Ma J, Zhang Y, He J (2008) Efficiently finding web services using a clustering semantic approach. In:
Proceedings of the international workshop on context enabled source and service selection, integration
and adaptation, pp 1–8

16. Cassar G, Barnaghi P, Moessner K (2013) Probabilistic matchmaking methods for automated service
discovery. IEEE Trans Serv Comput 7(4):654–666

17. Li Z, He K, Wang J et al (2014) An on-demand services discovery approach based on topic clustering. J
Internet Technol 15(4):543–555

18. Wang J, Gao P, Ma Y et al (2017) A web service discovery approach based on common topic groups
extraction. IEEE Access 5:10193–10208

19. Chen L, Hu L, Zheng Z, et al (2011)WTCluster: utilizing tags for web services clustering. In: Proceedings
of the international conference on service-oriented computing, pp 204–218

20. Klusch M, Fries B, Sycara K (2009) OWLS-MX: a hybrid semantic web service matchmaker for OWL-S
services. Web Semant Sci Serv Agents World Wide Web 7(2):121–133

21. Klusch M, Kapahnke P, Zinnikus I (2009) Hybrid adaptive web service selection with SAWSDL-MX
and WSDL-analyzer. In: Proceedings of the European semantic web conference on the semantic web:
research and applications, pp 550–564

22. Klusch M, Kaufer F (2009) WSMO-MX: a hybrid semantic web service matchmaker. Web Intell Agent
Syst 7(1):23–42

23. García JM, Ruiz D, Ruiz-Cortés A (2012) Improving semantic web services discovery using SPARQL-
based repository filtering. Web Semant Sci Serv Agents World Wide Web 17(4):12–24

24. Lampe U, Schulte S, Siebenhaar M, et al (2010) Adaptive matchmaking for RESTful services based on
hRESTS and MicroWSMO. In: Proceedings of the workshop on emerging web services technology, pp
10–17

25. Sellami S, Slaimi F, Boucelma O et al (2013) Flexible matchmaking for RESTful web services. In:
Proceedings of the OTM conference on the move to meaningful internet systems, pp 542–554

26. Roman D, Kopecký J, Vitvar T et al (2015) WSMO-Lite and hRESTS: lightweight semantic annotations
for web services and RESTful APIs. Web Semant Sci Serv Agents World Wide Web 31:39–58

123

698 N. Zhang et al.

27. Zhang N, He K, Wang J et al (2016) WSGM-SD: an approach to RESTful service discovery based on
weighted service goal model. Chin J Electron 25(2):256–263

28. Jung Y, Cho Y, Park YM et al (2013) Automatic tagging of functional-goals for goal-driven semantic
service discovery. In: Proceedings of the IEEE international conference on semantic computing, pp 212–
219

29. Kopecky J, Gomadam K, Vitvar T (2008) hRESTS: an HTML microformat for describing RESTful web
services. In: Proceedings of the IEEE international conference on web intelligence and intelligent agent
technology, pp 619–625

30. Liu X, Agarwal S, Ding C et al (2016) An LDA-SVM active learning framework for web service classi-
fication. In: Proceedings of the IEEE international conference on web services, pp 49–56

31. StrohmaierM, LuxM, GranitzerM et al (2007) How do users express goals on the web? An exploration of
intentional structures in web search. In: Proceedings of the international conference on web information
systems engineering, pp 67–78

32. Zhou TC, Lyu RT, King I et al (2014) Learning to suggest questions in social media. Knowl Inf Syst
43(2):389–416

33. Miller GA (1995) WordNet: a lexical database for English. ACM Commun 38(11):39–41
34. Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022
35. Wang H, Shi Y, Zhou X, et al (2010) Web service classification using support vector machine. In: Pro-

ceedings of the IEEE international conference on tools with artificial intelligence, pp 3–6
36. Zhang J, Wang J, Hung P et al (2012) Leveraging incrementally enriched domain knowledge to enhance

service categorization. Int J Web Serv Res 9(3):43–66
37. Chen L, Wang Y, Yu Q et al (2013) WT-LDA: user tagging augmented LDA for web service clustering.

In: Proceedings of the international conference on service-oriented computing, pp 162–176
38. Crasso M, Zunino A, Campo M (2011) A survey of approaches to web service discovery in service-

oriented architectures. J Database Manag 22(1):102–132
39. WangW, Barnaghi P, Bargiela A (2010) Probabilistic topic models for learning terminological ontologies.

IEEE Trans Knowl Data Eng 22(7):1028–1040
40. Bird S, LoperE,KleinE (2009)Natural language processingwith Python.O’ReillyMedia Inc., Sebastopol
41. Korenius T, Laurikkala J, Järvelin K, et al (2004) Stemming and lemmatization in the clustering of Finnish

text documents. In: Proceedings of the ACM international conference on information and knowledge
management, pp 625–633

42. Yao L,MimnoD,MccallumA (2009) Efficient methods for topicmodel inference on streaming document
collections. In: Proceedings of the ACM international conference on knowledge discovery and data
mining, pp 937–946

43. Griffiths TL, Steyvers M (2004) Finding scientific topics. Proc Nat Acad Sci USA 101(Suppl 1):5228–
5235

44. Andrieu C, Freitas ND, Doucet A et al (2002) An introduction to MCMC for machine learning. Mach
Learn 50(1):5–43

45. Zhang N, Wang J, Ma Y (2017) Mining domain knowledge on service goals from textual service descrip-
tions. IEEE Trans Serv Comput. https://doi.org/10.1109/TSC.2017.2693147

46. Rolland C, Souveyet C, Achour CB (1998) Guiding goal modeling using scenarios. IEEE Trans Softw
Eng 24(12):1055–1071

47. Stevenson M, Greenwood MA (2006) Comparing information extraction pattern models. In: Proceed-
ings of the workshop on information extraction beyond the document. Association for Computational
Linguistics, pp 12–19

48. Santorini B (1990) Part-of-speech tagging guidelines for the Penn Treebank Project. Technical Reports
(CIS), Paper 570

49. Marnee MCD, Manning CD (2008) Stanford typed dependencies manual
50. Manning CD, Raghavan P, Schütze H (2009) An introduction to information retrieval. Cambridge Uni-

versity Press, Cambridge
51. Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Int J Inf Process

Manag 24(5):513–523
52. Wang J, Feng Z, Zhang J et al (2014) A unified RGPS-based approach supporting service-oriented process

customization. Web Serv Foundations, pp 657–682

123

https://doi.org/10.1109/TSC.2017.2693147

Mining and clustering service goals for RESTful service. . . 699

Neng Zhang is a Ph.D. student in the State Key Laboratory of Software
Engineering, Wuhan University, China. He received the B.S. degree in
2012 from Wuhan University, China. His research interests include ser-
vices computing and knowledge mining.

Jian Wang is a lecturer of the State Key Lab of Software Engineer-
ing, Computer School, Wuhan University, China. He received the Ph.D.
degree in 2008 from Wuhan University, China. His current research
interests include services computing and software engineering.

Keqing He is a professor of the State Key Lab of Software Engineer-
ing, Computer School, Wuhan University, China. He received his doc-
toral degree from Hokkaido University of Japan in 1995. His research
interests include services computing and software engineering.

123

700 N. Zhang et al.

Zheng Li is an associate professor of the School of Computer
and Information Engineering, Henan University, Kaifeng, China. She
received the Ph.D. degree in 2013 from Wuhan University, China.
Her current research interests include services computing and software
engineering.

Yiwang Huang is an associate professor of the School of Data Science,
Tongren University, Tongren, China. He received the Ph.D. degree in
2015 from Wuhan University, China. His current research interests
include services computing and software engineering.

123

	Mining and clustering service goals for RESTful service discovery
	Abstract
	1 Introduction
	2 Related works
	2.1 Service discovery
	2.2 Service query expansion

	3 Overall service discovery framework
	4 Offline data process
	4.1 Service clustering based on topic models
	4.2 Service goal extraction
	4.3 Service goal clustering

	5 Online service discovery
	5.1 Topic matching
	5.2 Goal recommendation and selection
	5.3 Service retrieval

	6 Experiments and analysis
	6.1 Experimental dataset
	6.2 Evaluation of goal recommendation
	6.3 Evaluation of service discovery

	7 Conclusions
	Acknowledgements
	References

