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Abstract—Technical Q&A sites (e.g., Stack Overflow (SO)) are important resources for developers to search for knowledge about

technical problems. Search engines provided in Q&A sites and information retrieval approaches (e.g., word embedding-based) have

limited capabilities to retrieve relevant questions when queries are imprecisely specified, such as missing important technical details

(e.g., the user’s preferred programming languages). Although many automatic query expansion approaches have been proposed to

improve the quality of queries by expanding queries with relevant terms, the information missed in a query is not identified. Moreover,

without user involvement, the existing query expansion approaches may introduce unexpected terms and lead to undesired results.

In this paper, we propose an interactive query refinement approach for question retrieval, named Chatbot4QR, which can assist users

in recognizing and clarifying technical details missed in queries and thus retrieve more relevant questions for users. Chatbot4QR

automatically detects missing technical details in a query and generates several clarification questions (CQs) to interact with the user

to capture their overlooked technical details. To ensure the accuracy of CQs, we design a heuristic-based approach for CQ generation

after building two kinds of technical knowledge bases: amanually categorized result of 1,841 technical tags in SO and themultiple

version-frequency information of the tags. We develop a Chatbot4QR prototype that uses 1.88million SO questions as the repository for

question retrieval. To evaluate Chatbot4QR, we conduct six user studieswith 25 participants on 50 experimental queries. The results

are as follows. (1) On average 60.8 percent of the CQs generated for a query are useful for helping the participants recognize missing

technical details. (2) Chatbot4QR can rapidly respond to the participants after receiving a query within approximately 1.3 seconds.

(3) The refined queries contribute to retrievingmore relevant SO questions than nine baseline approaches. For more than 70 percent of

the participantswho have preferred techniques on the query tasks, Chatbot4QR significantly outperforms the state-of-the-art word

embedding-based retrieval approach with an improvement of at least 54.6 percent in terms of twomeasurements: Pre@k and NDCG@k.

(4) For 48-88 percent of the assigned query tasks, the participants obtain more desired results after interacting with Chatbot4QR than

directly searching fromWeb search engines (e.g., the SO search engine andGoogle) using the original queries.

Index Terms—Interactive query refinement, chatbot, question retrieval, stack overflow

Ç

1 INTRODUCTION

ONLINE technical Q&A sites, e.g., Stack Overflow1 (SO)
have emerged to serve as an open platform for knowl-

edge sharing and acquisition [1], [2], [3]. The Q&A sites

allow users to ask technical questions or provide answers to
questions asked by others. For example, SO, which has been
gaining increasing popularity in the software programming
domain, has accumulated more than 19 million questions
and 28 million answers as of December 20, 2019.2 The ques-
tions and answers in the Q&A sites form a huge resource
pool for developers to search for and solve programming
problems [4], [5].

Question retrieval is a key step for users to seek for knowl-
edge from Q&A sites, as well as a requisite step for many
automatic tasks, such as answer summarization [6], API rec-
ommendation [5], and code search [7]. Most of the Q&A sites
provide a search engine for users to retrieve questions using
a query. Typically, a query is simply a free form text that
describes a technical problem [8]. The search engines mainly
rely on traditional information retrieval (IR) techniques (e.g.,
keyword matching and term frequency-inverse document
frequency (TF-IDF) [9]), which cannot retrieve semantically
similar questions for queries due to the lexical gaps between
questions and queries [5]. Recently, word embedding techni-
ques (e.g., word2vec [10]) are widely used by the state-of-
the-art question retrieval approaches to bridge the lexical
gaps [3], [5], [6], [11]. Such word embedding-based
approaches have shown to be able to achieve better perfor-
mance than traditional IR techniques.
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A practical issue overlooked by the existing search
engines and question retrieval approaches is that it is not an
easy task for users to formulate a good query [8], [12]. A survey
conducted by Xu et al. [6] with 72 developers in two IT com-
panies shows that a query could be imprecisely specified as
users may not know the important keywords that the search
engines expect. Rahman et al. [13] conducted an empirical
study on code search using Google, which reveals that it is
common for developers to miss some important technical
details (e.g., programming languages and operating sys-
tems) in the initial queries. Consequently, inaccurate queries
will lead to unsatisfactory results of question retrieval, as illus-
trated in the motivating example (see Section 2). To enhance
the quality of queries, many automatic query expansion
approaches have been proposed to expand queries with rele-
vant terms extracted from a thesaurus (e.g., WordNet [14])
or similar resources [8], [12], [15]. Although the approaches
can help retrieve relevant results, they are insufficient to
obtain accurate results due to two reasons: (1) lack of techni-
ques to identify the missing information in a query; and (2)
queries expanded with unexpected terms without user
involvement (as demonstrated in Section 6.1).

In this paper, we propose to interactively refine queries
with users using a chatbot, named Chatbot4QR, in order to
retrieve accurate technical questions from SO (or other Q&A
sites) for users. Chatbot4QR focuses on accurately detecting
the missing technical details in a query. It first retrieves an
initial set of top-n SO questions similar to the query. To build
a responsive chatbot, we adopt a two-phase approach to
explore a large-scale repository of SO questions by combin-
ing Lucene [16] (an ultra-fast text search engine that imple-
ments BM25) and a word embedding-based approach. Next,
several clarification questions (CQs)3 [17] are generated using
a heuristic-based approach based on the technical SO tags
appearing in the query and the top-n similar questions. To
identify the types of technical details missed in a query for
CQ generation, we build two technical knowledge bases: a
manually categorized result of 1,841 SO tags and the multi-
ple version-frequency information of the tags. Then, Chat-
bot4QR interacts with the user by prompting the CQs to the
user and gathers the user’s feedback (i.e., a set of technical
tags and versions answered by the user to CQs). Finally, the
user’s feedback is used to adjust the initial similarities of SO
questions (by assigning a weight coefficient h to the feed-
back), which results in a refined list of top-k similar questions
for recommendation.

To evaluate Chatbot4QR, we collected 1,880,269 SO ques-
tions as a large-scale repository for implementing a Chat-
bot4QR prototype and testing the performance of question
retrieval for queries. Since our evaluation process contains six
user studies that require a great amount of manual efforts, we
built 50 experimental queries from the titles of another 50 SO
questions. We conducted the user studies with 25 recruited
participants to investigate the following research questions:

RQ1. What are the proper settings of the parameters n and h in
Chatbot4QR?

In Chatbot4QR, there are two key parameters: (1) n is the
number of the initial top similar SO questions used for CQ

generation; and (2) h is the weight coefficient used for simi-
larity adjustment of SO questions. We conducted a user
study to evaluate the quality of CQs generated for queries
by setting n from 5 to 50 and the quality of the top ten SO
questions recommended by setting h from 0 to 1. Based on
the results, we determine the proper settings of n and h as
15 and 0.2, respectively.

RQ2. How effective can Chatbot4QR generate CQs?
We conducted a user study to examine the usefulness of

the CQs, i.e., whether the CQs can help the participants rec-
ognize the missing technical details in queries. The results
show that on average, 60.8 percent of the generated CQs are
useful for a query.

RQ3. Can Chatbot4QR retrieve more relevant SO questions
than the state-of-the-art question retrieval and query expansion
approaches?

We conducted a user study to evaluate the relevance of
the top ten SO questions retrieved by Chatbot4QR and nine
baselines, which apply two popular retrieval approaches
(i.e., the Lucene search engine and a word embedding-
based approach) and four query expansion approaches (see
Section 5.3). The results show that Chatbot4QR outperforms
the baselines by at least 54.6 percent in terms of two popular
metrics: Pre@k and NDCG@k. For more than 70 percent of
the participants, the improvement of Chatbot4QR over the
baselines is statistically significant.

RQ4. How efficient is Chatbot4QR?
We recorded the execution time of Chatbot4QR during

the experiments. Chatbot4QR takes approximately 1.3 sec-
onds to start interaction with the user after receiving a
query, which is efficient for practical uses.

RQ5. Can Chatbot4QR help obtain better results than using
Web search engines alone?

We conducted four user studies (including the user
study conducted in RQ3) for answering this research ques-
tion. We asked the participants to search for their satisfied
results for queries using Web search engines (e.g., the SO
search engine and Google [18]) by applying the original
queries and the refined queries after interacting with Chat-
bot4QR. Then, the participants evaluated the relevance of
the search results. Finally, the participants chose their pre-
ferred results from three kinds of results: the two kinds of
Web search results and the SO questions retrieved by Chat-
bot4QR. The results show that for 48-88 percent of the
assigned query tasks, the participants obtain more desired
results either from Chatbot4QR or by applying the queries
reformulated after the interaction with Chatbot4QR to Web
search engines.

Paper Contributions:

1. We propose a novel chatbot to assist users in refining
queries. To the best of our knowledge, this is the first
work that uses an interactive approach to improving
the quality of queries for technical question retrieval.

2. We conduct six user studies to evaluate Chatbot4QR.
The evaluation results show that Chatbot4QR can
generate useful CQs to help users recognize and clar-
ify the missing technical details in queries efficiently.
The refined queries contribute to retrieving better
results than using the existing question retrieval
approaches and Web search engines alone.

3. We define “clarification question” as a question that asks for some
unclear information that is not given in the context of a query.
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3. We release the source code of Chatbot4QR and the
experimental dataset [19] to help other researchers
replicate our experiments and extend our study.

Paper Organization. Section 2 describes a motivating
example for our interactive query refinement approach.
Section 3 presents the details of Chatbot4QR. Sections 4
and 5 report the experimental setup and results, respec-
tively. Section 6 discusses several key aspects of Chat-
bot4QR and the threats to validity of our work. Section 7
reviews the related work. Section 8 concludes the paper and
discusses future work.

2 MOTIVATING EXAMPLE

To motivate the use of an interactive approach to assisting
users in refining queries, we illustrate the impact of a vague
query on the quality of the questions retrieved by the SO
search engine, and explain the key idea of Chatbot4QR.

Fig. 1 shows an annotated screenshot of the top three
questions retrieved by the SO search engine for a query
“prevent SQL injection”. Each retrieved question is tagged
with a set of relevant technical terms, i.e., tags. For example,
the first question is tagged with techniques, such as ‘php’
and ‘mysql’. Obviously, the query is vague due to missing
some important technical details, e.g., the preferred pro-
gramming languages and databases. Looking at the tags
associated with each question, the first and the second ques-
tions are related to the programming language ‘php’, while
the third question is related to ‘java’. Only the first question
is explicitly tagged with the database ‘mysql’. Although the
titles of the three questions are similar to the query, they are
not satisfactory to every potential user as the users may
have different technical background or programming con-
text. For example, if a user prefers ‘java’, the top two ques-
tions are undesirable, while the third question may be
suitable depending on the user’s preferred database. If a
user is only familiar with the programming language ‘c#’,
none of the three questions is relevant to the user. However,
we find that there are similar questions tagged with ‘c#’ out-
side the top three returned results. To retrieve more desired
questions for a user, it is necessary to assist the user in clari-
fying technical details that are not initially specified.

We propose Chatbot4QR to work interactively with users
to improve the quality of queries. Chatbot4QR can heuristi-
cally generate several CQs to ask for two kinds of technical
details: (1) the types of techniques widely adopted in soft-
ware development, such as programming languages, data-
bases, and libaries; and (2) the version of a technique as
different versions of the technique may have substantial
changes (e.g., ‘python-2.x’ and ‘python-3.7’), which may
cause version-sensitive problems. In Fig. 1, there are two
programming languages in the top three retrieved ques-
tions, but no programming language is specified in the
query. Therefore, a CQ can be generated, e.g., “What pro-
gramming language, e.g., php or java, does your problem refer
to?”. Suppose that the user answers the CQ with ‘java’, since
‘java’ can have tags with multiple versions (e.g., ‘java-7’ and
‘java-8’), a new CQ is generated to ask for a specific version,
e.g., “Can you specify the version of ‘java’, e.g., 7 or 8?”.

We strive to make our generated CQs easy for users to
understand and answer, for the purpose of adoption in
practice. Although a user needs to interact with our chatbot
to answer the CQs, the amount of time spent is acceptable
by the participants in our user studies (see Section 5.4). The
feedback to CQs can help retrieve more relevant results and
reduce the time required for the manual examination of
undesirable results.

3 THE APPROACH

Fig. 2 gives an overview of our approach, which consists of
two components: (1) offline processing which builds the
Lucene index of SO questions, two language models (i.e.,
word2vec and word Inverse Document Frequency (IDF)
vocabulary), and the categorization and version-frequency
information of SO tags; and (2) Chatbot4QR which contains
four main steps, namely �1 retrieving the initial top-n simi-
lar SO questions for a query, �2 generating CQs by detecting
the missing technical details in the query, �3 interacting
with the user by asking the CQs to assist them in refining
the query, and �4 producing the final top-k recommended
questions by adjusting the similarities of questions based on
the user’s feedback to CQs.

3.1 Offline Processing

As shown in Fig. 2, Chatbot4QR needs to retrieve the initial
top-n similar SO questions for a query before generating
CQs. We build two language models, i.e., word2vec and
word IDF vocabulary, to measure similarities between SO
questions and queries, similar to the previous work [5], [6],
[20]. The word2vec model is used to measure the semantic
similarities among words; and the word IDF vocabulary
measures the importance of words in the corpus. However,
it is time-consuming to compute the semantic similarity
between a query and each question in a large-scale reposi-
tory, e.g., SO. To reduce the search space, we utilize Lucene
to build the index for SO questions and retrieve a set of possi-
bly similar questions before applying the word embedding-
based approach. Moreover, we build two technical knowl-
edge bases from SO tags for SO generation, i.e., the categori-
zation andmultiple version-frequency information of tags.

Weuse the text corpus of SO questions (including the titles,
tags, and bodies) and the SO tags (including the descriptions

Fig. 1. The top three questions retrieved for a query by the SO search
engine.
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and synonyms crawled from the SO TagWiki [21]) as the
input of the offline processing component. Fig. 3 shows the
description and ten synonyms of SO tag ‘java’. For questions,
we remove the long code snippets enclosed in HTML tag
preh i from the bodies. We also reduce each word to its root
form (aka. stemming) using the Porter stemmer inNLTK [22],
a Python toolkit for natural language processing. As typical
users would decide the relevance of a SO question to a query
using the title and tags before checking the long body, we
only consider the titles and tags of SO questions for question
retrieval.

3.1.1 Lucene Index Building

We create a document for each SO question by gathering the
title and tags, and build the index for all questions using
Lucene.

3.1.2 Word Embedding

We apply the sentence tokenizer in NTLK to the titles and
bodies of SO questions. Using the collected sentences, we

train a word2vec model using Gensim [23] with the default
parameter setting.

3.1.3 Word IDF Computation

We remove the stopwords provided in NLTK from SO
questions and build the word IDF vocabulary by computing
the IDF metric of each word.

3.1.4 Tag Version-Frequency Extraction

Many SO tags have multiple versions due to the update of
techniques; and each version has its own frequency. The fre-
quency of a SO tag reflects the number of SO questions that
have been tagged with it. For example, the tag ‘java’ has sev-
eral versions, e.g., ‘7’ and ‘8’; and the frequencies of ‘java-7’
and ‘java-8’ are 2,861 and 18,302, respectively. We extract
the multiple version-frequency information of SO tags for
generating a particular kind of CQs that ask users to specify
the version of a technique that they are interested in.

By examining the SO tags with versions, there are two
common templates of a technique and the corresponding
versions: (1) concatenate a technique and a version number
by ‘-’, e.g., ‘java-8’ and ‘python-3.x’; and (2) append a version
number to a technique, e.g., ‘sqlite3’ and ‘sslv2’. We extract
the version numbers in SO tags using regular expressions.
The extracted versions and the corresponding frequencies of
each tag t are stored in a dictionary, denoted as ver freqsðtÞ.
For example, two elements in ver freqsð‘java’) are {‘7’: 2,861,
‘8’: 18,302}.

3.1.5 Tag Categorization

Categorizing SO tags to a set of meaningful types is critical
for generating CQs for queries. Existing work that catego-
rizes SO tags (e.g., [24], [25], [26]) is either incomplete or too
fine-grained for our CQ generation. For example, only six
types of SO tags were considered by Ye et al. [24] while
neglecting some important types, e.g., operating system and
plugin. Chen et al. [25] automatically generated 167 types

Fig. 2. An overview of our approach.

Fig. 3. An example SO tag “java”.
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where the analogous types (e.g., library and module) should
be better merged. Incomplete types result in missing useful
CQs, while fine-grained types lead to redundant CQs.

We strive to manually build a high-quality categorization
of SO tags. However, the manual categorization of more than
50 thousands tags in SO is a cumbersome task. As the chances
for querying the low frequency tags are low, we focused on
the tags with the frequency of more than 1,000. As a result,
we selected 4,158 tags. Despite the synonyms defined in SO,
we also considered the tags marked with version numbers to
be synonyms. For example, an extended synonyms set is
{‘java’, ‘java-se’, ‘jdk’, ‘java-7’, ‘java-8’, ...}. We kept only the
most frequent tag in each set of synonyms. Consequently, we
obtained 3,772 tags. Then, we categorized the tags by using
two iterations of a card sorting approach [27] as follows.

� Build a set of types. We observed that many SO tags
have a noun phrase in the first description sentence to
indicate the types of them, which are typically
expressed in the form of “X is a/an noun phrase ...” [26].
As shown in Fig. 3, the first description sentence of
‘java’ shows that it is a programming language. We
randomly sampled 349 tags from the 3,772 tags, which
is a statistically significant sample size considering a
confidence level of 95 percent and a confidence inter-
val of 5. We used the Stanford POS (Part-of-Speech)
tagger in NLTK to parse the first description sentence
of each tag and extracted the first noun phrase behind
the articles ‘a’ or ‘an’. The first two co-authors indepen-
dently examined the noun phrases and built their own
sets of types. Then, the two co-authors and a postdoc
(who is not a co-author of the paper) together dis-
cussed the disagreements, eventually resulting in 20
types, as presented in Table 1. The two types ‘non-PL
Language’ and ‘non-OS System’ respectively represent
the non-programming languages (e.g., the query

language ‘sql’) and the non-operating systems, e.g., the
version-control system ‘svn’.

� Categorize tags based on types. Based on the built types,
the two co-authors further independently categorized
each of the 3,772 tags. In total, 1,641 tags were initially
categorized by at least one co-author. The uncatego-
rized tags belong to the ignored types which are too
general and are likely to be useless for CQ generation,
e.g., concept and keyword. There were 215 tags with
disagreement. The Fleiss Kappa [28] value of the two
categorization results is 0.86, meaning an almost per-
fect agreement. The two co-authors and the postdoc
worked together again to discuss the disagreements.
Finally, they reached consesus on the categorization
of 1,548 tags. The synonyms of a tagwere then catego-
rized to be the same type(s) as the tag. Table 1
presents the numbers of tags categorized to each of
the 20 types, along with example tags. The numbers
in parentheses are the numbers of synonyms catego-
rized to the corresponding types. For example, “1,841
(305)” in the bottom rowmeans that 1,841 tags includ-
ing 305 synonyms are categorized to the 20 types.
Note that the sum of the number of SO tags catego-
rized to the 20 types is 1,897, which is larger than
1,841, since some tags are categorized to multiple
types. For example, the tag ‘xml’ is categorized to the
two types ‘non-PL Language’ and ‘Format’.

In our approach, tag categorization is a semi-automatic
step. We took approximately 65 hours and nine hours to
complete the two iterations, respectively. It is worth to men-
tion that the categorized tags are reusable and can be incre-
mentally updated easily. More specifically, when the
frequencies of a number of (e.g., 50) uncategorized SO tags
exceed 1,000, we can automatically extract the noun phrases
from the first description sentences of the tags and then cat-
egorize them.

TABLE 1
Twenty Types of SO Tags

Type #Tags Categorized to the Type Example Tags

Library 418(36) jquery, winforms, pandas, opencv, numpy
Framework 285(83) .net, node.js, hibernate, spring, twitter-bootstrap
Tool 211(27) maven, curl, gcc, ant, openssl
Class 171(3) uitableview, listview, , httprequest, imageview, applet
Programming Language 96(31) javascript, java, c#, python, c++
non-OS System 77(12) wpf, git, svn, gps, hdfs
Platform 74(14) azure, github, amazon-ec, google-cloud-platform, ibm-cloud
Service 65(2) outlook, firebase-authentication, gmail, google-cloud-messaging, google-play-services
Technique 64(2) jsp, reflection, proxy, nlp, deep-learning
Database 63(16) mysql, sql-server, mongodb, oracle, neo4j
non-PL Language 60(4) css, sql, wsdl, plsql, sparql, xml
Operating System 58(28) android, ios, linux, windows, macos
Server 55(17) tomcat, nginx, websphere, weblogic, jboss
Format 46(6) json, xml, csv, pdf, jar
Plugin 44(6) silverlight, jquery-validate, android-gradle, pydev, jstree
Environment 33(9) eclipse, netbeans, visual-studio, webstorm, spyder, jdeveloper
Engine 32(2) apache-spark, google-app-engine, elasticsearch, andengine, innodb
Design Pattern 15(0) model-view-controller, singleton, adapter, inversion-of-control, decorator
Model/Algorithm 15(1) dom, classification, rsa, svm, logistic-regression
Browser 15(6) google-chrome, internet-explorer, firefox, safari, opera

Total 1,841(305)

For each value in the “#Tags Categorized to the Type” column, the first number is the total number of tags categorized to the corresponding type; and the sec-
ond number in the parenthesis is the number of tag synonyms categorized to the type.
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3.2 Chatbot4QR

Once the offline processing component is completed, the
Chatbot4QR component shown in Fig. 2 is launched when a
user submits a query. The query is processed first by two
steps: stemming and stopword removal. Then, the four
steps �1 -�4 in Fig. 2 are conducted to help the user refine the
query if it has unclear technical details and recommend the
top-k similar SO questions to the user.

3.2.1 Two-Phase Similar Question Retrieval

To detect if there are technical details left out in the query,
denoted as q, we obtain the initial top-n SO questions simi-
lar to q using a two-phase approach. More specifically, we
first use the Lucene search engine to retrieve a reduced set
of N possible similar questions based on the Lucene index
built for SO questions. Then, we use the word embedding-
based approach adopted in the previous work [5], [6], [20]
to retrieve the top-n semantically similar questions, denoted
as iSimQnðqÞ, from the reduced set. To ensure that the
majority of semantically similar questions can be covered
by the reduced set, we set N = 10,000.

3.2.2 Heuristic Clarification Question Generation

Based on the initial top-n similar SO questions obtained for
query q, we design a heuristic-based approach to automati-
cally detecting the missing technical details in q and gener-
ate a set of CQs to help the user refine q interactively. The
approach contains two sub-steps: tag indentification and
rule-based CQ generation & ranking.

Tag Identification. To generate CQs, we identify the SO
tags appearing in q and the top-n similar questions
iSimQnðqÞ. This is not an easy task due to the diverse
appearances of SO tags in natural language texts. More spe-
cifically, every SO tag is lowercase and multiple tokens are
concatenated by ‘-’, e.g., ‘sql-injection’. Moreover, SO tags
can have versions, e.g., ‘java-8’. In contrast, the tags and ver-
sions can appear in a variety of forms in queries and the
titles of SO questions, e.g., ‘java 8’, ‘Java8’, and ‘Java 8’s’.
Before identifying tags in q and the similar questions, we
transform each categorized SO tag by removing the possible
version and replacing ‘-’ with a blank character. We also
transform the original query as well as the original title and
tags of each question in iSimQnðqÞ by (1) converting them
to lowercase, (2) replacing punctuations (except ‘#’ and ‘+’
as such symbols can be used as a part of a tag, e.g., ‘c#’ and
‘c++’) with a blank character, and (3) separating the possible
version at the end of each token.

Using the transformed results described above, we iden-
tify the tags in q and each question Q 2 iSimQnðqÞ. We also
extract the version number, if it exists, of each tag identified
from q. We filter out the version numbers of tags in the top-
n similar questions as we directly use the version-frequency
information of tags stored in ver freqs (see Section 3.1.4) to
generate CQs, which may help cover more similar questions
outside the top-n. We group the two sets of tags identified
from q and similar questions by the types of tags. The two
grouped sets of tags are denoted as typed tagsðqÞ and
typed tagsðiSimQnðqÞÞ, respectively. Table 2 presents the
grouped tags identified from the query and the top three SO

questions shown in Fig. 1. In the table, we display the two
most frequent versions of each tag in typed tagsðiSimQ3ðqÞÞ.

Rule-Based CQ Generation & Ranking. By comparing the
two sets of identified tags, we generate three kinds of CQs
for query q using the following three heuristic rules:

� Rule 1 (version related CQ generation). For each tag t in
typed tagsðqÞ, if it has no specified version in q and it
is a multi-version tag (i.e., lenðver freqsðtÞÞ � 2), a
version related CQ is generated, such as “Can you
specify the version of t, e.g., v1 or v2?”. v1 and v2 are the
two most frequent versions of t in ver freqsðtÞ, which
are displayed to help the user better understand the
CQ and provide feedback correctly.

� Rule 2 (selection related CQ generation). For each type
type in typed tagsðiSimQnðqÞÞ but not in typed tagsðqÞ,
if there are two or more tags included in the type, a
selection related CQ is generated, such as “What
type, e.g., t1 or t2, are you using?”. t1 and t2 are the two
most frequent tags belonging to type in typed tags
ðiSimQnðqÞÞ. To make the selection related CQs
soundedmore natural, we customized the CQ expres-
sions for the 20 types of SO tags, as shown in Table 3.

� Rule 3 (confirmation related CQgeneration). For each type
type in typed tagsðiSimQnðqÞÞ but not in typed tagsðqÞ,
if only one tag t is included in the type, a confirma-

tion related CQ is generated, such as “Are you using
t? (y/n), or some other types.”.

Rule 3 is a special case of Rule 2. We distinguish them
because a confirmation related CQ is more informative,
implying that only one tag belonging to that type is identified
from the initial top-n similar questions. If a user indeed uses
the asked technique, they can easily answer the CQwith ‘y’.

In the subsequent interaction with the user, CQs that are
more relevant to the query should be asked first. We rank the
generated CQs by assigning a score to each CQ as follows:

� If cq is a version related CQ, its score is set to 1.0
because the tag asked in cq is explicitly specified by
the user.

� If cq is a selection or confirmation related CQ, its score
is calculated according to the similarities of the ques-
tions that contain any tags belonging to the type asked

in cq, i.e.,

P
Q2iSimQðtypeÞ simðq;QÞP
Q2iSimQnðqÞ simðq;QÞ , where iSimQðtypeÞ

denotes the subset of questions in iSimQnðqÞ that con-
tains a tag categorized to type; and simðq;QÞ is the
semantic similarity between q andQ.

TABLE 2
Tags Identified From the Query “Prevent SQL injection” (q)

and the Top Three SO Questions Shown in Fig. 1

Type typed_tags(q) typed_tags(iSimQ3(q))

Programming Language { php: [‘7’ , ‘5.3’ ],
java: [‘8’ , ‘7’ ] }

non-PL Language { sql: ‘’ } { sql: [] }
Database { mysql: [‘2’ , ‘5.7’ ] }
Framework { .net: [‘4.0’ , ‘3.5’ ] }
Library { jdbc: [] }
Class { pdo: [] }
Technique { sql-injection: ‘’ } { sql-injection: [] }
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3.2.3 Interaction With the User

Based on the ranked CQ list, Chatbot4QR interacts with the
user by asking each CQ one-by-one and gathers the user’s
feedback. Fig. 4 illustrates the chat process with a user by
submitting the query shown in Fig. 1 to Chatbot4QR. The
five CQs without a dotted frame are initially generated
based on the top 15 (the proper value of the parameter n in
Chatbot4QR, as evaluated in Section 5.1) similar SO ques-
tions retrieved using the two-phase approach. As shown in
Fig. 4, Chatbot4QR has the following features:

1. It can interact with the user in multiple rounds.
2. It can generate new version related CQs to ask for

the versions of the multi-version tags (e.g., ‘java’ and
‘mysql’) that are answered by the user to confirma-
tion or selection related CQs.

3. To be user-friendly, it allows the user to skip any
CQs that might be not useful or difficult to answer
by pressing Enterh i, or to terminate the interaction
anytime.

3.2.4 Similarity Adjustment of Questions

We distinguish two kinds of a user’s feedback to the CQs of
query q: (1) positive feedback, denoted as pfbðqÞ, which
includes the tags and versions answered by the user; and (2)
negative feedback, denoted as nfbðqÞ, which includes the tags
involved in the confirmation related CQs whose answers are
explicitly ‘n’ (means that the user does not use the asked
technique). We do not consider the possible negative feed-
back to CQs since the user’s rationale is unknown. For exam-
ple, if a confirmation related CQ has no answer (i.e., the CQ
was skipped), it is not certain that the user does not use the
asked technique. It might be the reason that users are not
familiar with the programming context and thus have diffi-
culties in answering. In Fig. 4, the positive and negative feed-
back given by the user are

� pfbðqÞ = {‘java 9’, ‘mysql 5.7’, ‘jdbc’},
� nfbðqÞ = {‘sqlalchemy’}.
Using the two kinds of feedback, we adjust the semantic

similarity between q and each question Q in the reduced set
retrieved using Lucene as

simðq;QÞ ¼ simðq;QÞ �
 
1þ h�

 X
e2pfbðqÞ

mdðe;QÞ

�
X

e2nfbðqÞ
mdðe;QÞ

!!
;

(1)

where mdðe;QÞ measures the degree that Q matches the tag
and its possible version in the feedback element e ¼ ðt; vÞ
(where t is the tag and v is the version), e.g., ‘java 9’. The coef-
ficient h 2 ½0; 1� is used to weight the importance of the tech-
nical feedback. A larger h means to put more weight on the
feedback.More specifically, h ¼ 0 ignores the feedback, while
h ¼ 1means that the feedback has the same importance as the
original query. In thiswork, we definemdðe;QÞ as

TABLE 3
Customized CQ Expressions for the 20 Types of SO Tags Shown in Table 1

Type Customized Selection Related CQ Expression for the Type

Library Which library, e.g., X or Y, are you using?
Framework If you are using a framework, e.g., X or Y, please specify:
Tool Maybe you are using a tool, e.g., X or Y, for the problem. If so, what is it?
Class Are you using a specific class, e.g., X or Y? Please input it:
Programming Language What programming language, e.g., X or Y, does your problem refer to?
non-OS System Apart from the operating system (OS), is there a non-OS, e.g., X or Y, used for your problem?
Platform Tell me a possible platform, e.g., X or Y, you are using:
Service For the problem, if you are using a service, e.g., X or Y, please provide:
Technique Please give a possible technique, e.g., X or Y, you might use for the problem:
Database I want to know whether you are using a database, e.g., X or Y. Can you provide it?
non-PL Language Despite the programming language (PL), are you using any non-PL languages, e.g., X or Y?
Operating System Could you provide an operating system, e.g., X or Y?
Server Which server, e.g., X or Y, does your program intend to run on?
Format What is the format, e.g., X or Y, of the data/file you are handling?
Plugin I am wondering if you are using a plugin, e.g., X or Y. Specify it if there is one:
Environment Would you like to provide an environment, e.g., X or Y, you are using?
Engine Give me a possible engine, e.g., X or Y, that you need to execute your program:
Design Pattern Any design patterns, e.g., X or Y, used for your problem?
Model/Algorithm Do you use a model or an algorithm, e.g., X or Y? Please specify:
Browser Your problem may be related to a browser, e.g., X or Y. Can you specify it?

In each CQ expression, “X” and “Y” are two example SO tags of the corresponding type that appear in the initial top similar SO questions retrieved for a query.

Fig. 4. The interaction with a user for the query shown in Fig. 1.
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mdðe;QÞ ¼
1:5; if e:v exists and both

e:t and e:v are matched by Q
1:0; if only e:t is matched by Q
0; otherwise.

8>><
>>: (2)

The idea of Eq. (1) is to increase (resp. decrease) the
semantic similarity of Q according to the amount of positive
(resp. negative) feedback matched by Q. A refined list of the
top-k similar questions is produced based on the adjusted
similarities and recommended to the user.

4 EXPERIMENTAL SETUP

Chatbot4QR is an interactive approach that considers users’
personalized technical background and programming con-
text to retrieve desired questions. We design a series of user
studies to evaluate Chatbot4QR. In this section, we describe
the experimental setup of our user studies. Our experimen-
tal environment is a laptop with Intel Core i5-8300H CPU,
16G RAM, and Windows 10 Operating System.

4.1 Data Collection and Prototype Implementation

We downloaded the official SO data dump released in Sep-
tember, 2018 and built a repository of 1,880,269 SO ques-
tions that are tagged with six popular programming
language tags: {‘javascript’, ‘java’, ‘c#’, ‘python’, ‘c++’, ‘c’}. To
ensure the quality of our repository, every question needs
to have an accepted answer and a positive score (i.e., the
votes of a question shown in Fig. 1). Using the collected
questions, we built a text corpus by removing the long code
snippets in the bodies of questions and processing all words
in the title, tags, and body of each question using the Porter
stemmer in NLTK. We then trained a word2vec model
using Gensim (with the default parameter setting), com-
puted the word IDF vocabulary, and built the Lucene index
for all questions. Moreover, we crawled the descriptions
and synonyms of 55,661 SO tags from the TagWiki, and
built two technical knowledge bases: the categorization and
version-frequency information of tags. The details of these
offline steps are described in Section 3.1.

As described in Section 3.2, Chatbot4QR has three param-
eters: (1) n is the number of the initial top similar SO ques-
tions used for CQ generation; (2) h is the weight coefficient of
users’ technical feedback in Eq. (1) used to adjust the similar-
ities of questions; and (3) k is the number of the top similar
questions recommended to the user. We determined the
proper settings of n and h as 15 and 0.2, respectively, by con-
ducting a user study (see Section 5.1). Considering the fact
that users are likely to be only interested in the top ranked
results [29], we set k = 10 in our prototype implementation,
similar to the previouswork [30], [31], [32].

4.2 Experimental Query Selection

In the existing research work on information retrieval from
SO [5], [6], [8], [20], [32], [33], the experimental queries used
for evaluation are built from the titles of SO questions
selected according to some criteria, of which two commonly
used criteria are: (1) the questions should have accepted
answers; and (2) the scores of questions should be higher
than a threshold (e.g., 5). This is suitable because the title of
a SO question is a simple text that briefly describes a techni-
cal problem that a developer wants help for. We built 50

experimental queries from the titles of SO questions outside
our repository. We chose 50 queries due to two reasons: (1)
it is a relatively common number of experimental queries
used in the previous work [30], [32], [33]; and (2) our user
studies contain six consecutive stages (see Fig. 5) which
require a great amount of manual efforts.

Our experimental queries were selected as follows. We
first collected the popular SO questions which are tagged
with the aforementioned six programming languages but not
in our repository using two criteria: (1) the view count should
be no less than 1,000; and (2) the score should be at least five.
Then, we randomly selected 50 queries from the titles of the
collected questions. For each query, we further ensured that
there is no duplicate question contained in the repository,
similar to the previous work [6]. As listed in Table 4, the 50
queries cover a variety of technical problems, which involve
different techniques, e.g., programming languages, data-
bases, and deep learning libraries. Some of the queries are
simple, e.g., “Reading a line using scanf()” while others are
complex, e.g., “How to sort dictionaries of objects by attribute
value in python?”. Moreover, there are queries expressed with
technical terms, e.g., “Killing thread after some specified time
limit in Java”,while some queries have no specified technique,
e.g., “Recognize numbers in images”. The diversity of the
queries can improve the generality of our experiment results.

We processed the queries by performing stemming and
stop word removal. Based on the Lucene index built for
SO questions, we retrieved the top N=10,000 similar ques-
tions for each query using the Lucene search engine.
We then re-ranked the 10,000 questions by measuring
semantic similarities between the questions and the query
using the word embedding-based approach adopted in the
previous work [5], [6].

4.3 Participant Recruitment

To conduct our user studies shown in Fig. 5 for evaluating
Chatbot4QR, we recruited participants through the mailing
lists of the first and the third co-authors’ colleges. In the e-
mail, we briefly introduced Chatbot4QR and our evaluation
plan, and asked a few questions about the programming

Fig. 5. The flow of our six user studies.
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background. We received 25 responses that agreed to join
our user studies. The number of our participants is close to
the numbers of participants used to conduct user studies in
the previous work [34], [35], which is considered to be suffi-
cient for our user studies. Table 5 presents the profiles of
the 25 participants. Since some of the participants have
working experience in companies like Hengtian,4 the
“#Years of Programming Experience” column shows the years

of both working experience and student experience in pro-
gramming for each participant. We observe that the partici-
pants have diverse familiar programming languages. Some
of them are only familiar with Java or Python, while others
have multiple familiar languages. Moreover, there are nota-
ble differences in the participants’ years of programming
experience (from 2 to 11 years) with an average of 5.92 years.

We asked the participants to review the experimental
queries and no participant reported being unable to under-
stand the queries after we allowed them to search for the
definitions of unfamiliar technical terms (e.g., ‘LINQ’ and
‘NPM’) online. As listed in Table 4, our queries cover multi-
ple programming languages, e.g., Java, Python, and C++.
We did not guarantee that the participants are familiar with
all the programming languages because Chatbot4QR intends
to help both experienced developers and novices. The diversity of
the participants’ technical background can help improve
the generality of our experiment results.

4.4 Research Questions and the Allocation of
Queries to Participants for User Studies

As shown in Fig. 5, we designed six user studies to investi-
gate the following research questions:

RQ1. What are the proper settings of the parameters n
and h in Chatbot4QR?

RQ2.How effective can Chatbot4QR generate CQs?
RQ3. Can Chatbot4QR retrieve more relevant SO ques-

tions than the state-of-the-art question retrieval and query
expansion approaches?

RQ4.How efficient is Chatbot4QR?
RQ5. Can Chatbot4QR help obtain better results than

using Web search engines alone?
It is a cumbersome task for a participant to conduct the

five user studies 2-6 (the user study 1 is a pilot user study)

TABLE 4
Fifty Experimental Queries

No. SO Question
ID

Experimental Query (the Title of the SO Question)

1 17294809 Reading a line using scanf()
2 423006 How do I generate points that match a histogram?
3 15389110 How to convert Json Stringwith dynamic fields toObject?
4 2733356 Killing thread after some specified time limit in Java
5 20458401 How to insertmultiple rows intodatabase using hibernate?
6 15626686 Better way to parse xml
7 2592985 ArrayList shallow copy iterate or clone()
8 6262084 how to slide image with finger touch in android?
9 5108926 how to encrypt data using AES in Java
10 7918593 How can I determine the week number of a certain date?
11 90838 How can I detect the encoding/codepage of a text file
12 12981190 How to make a static variable thread-safe
13 22173762 Check if two Lists are equal
14 2411893 Recognize numbers in images
15 3561202 Check If Instance Of A Type
16 8702165 How to clone (and restore) a DOM subtree
17 11182924 How to check if JavaScript object is JSON
18 30950032 How can I run multiple NPM scripts in parallel?
19 531998 Set path programatically
20 28052395 Find whether a 2d matrix is subset of another 2d matrix
21 14268053 Most efficient way to calculate pairwise similarity of

250k lists
22 5450055 How can I improvemy INSERT statement performance?
23 3548495 Download, extract and read a gzip file in Python
24 44274701 Make predictions using a tensorflow graph from a keras

model
25 4869189 How to transpose data in a csv file?
26 215557 Most elegant way to implement a circular list (FIFO)
27 1558402 Memory usage of current process in C
28 1805518 Replacing all non-alphanumeric characters with empty

strings
29 6390339 How to query XML that has XSL in Java with XPath?
30 2676719 Calculating the angle between two points
31 10975913 How to make a new list with a property of an object

which is in another list
32 8892073 how to compare webpages structure (dom) similarity in

java?
33 9963331 java : How to know how many Threads have been

Created and running?
34 891345 Get a screenshot of a specific application
35 8910840 Using LINQ to extract ints from a list of strings
36 21461102 Converting Html Table to JSON
37 6773550 Get id of div from its class name
38 2617515 Recommendation for a HTTP parsing library in C/C++
39 1323824 how to read numbers from an ascii file (C++)
40 3823921 Convert big endian to little endian when reading from a

binary file
41 13340955 Convert linear Array to 2D Matrix
42 1623849 Fastest way to zero out low values in array?
43 32109319 How to implement the ReLU function in Numpy
44 14472795 How do I sort a list of datetime or date objects?
45 5741518 Reading each column from csv file
46 22722079 Choosing elements frompython list based on probability
47 7891697 Numpy Adding two vectors with different sizes
48 8022530 Python check for valid email address?
49 459981 BeautifulSoup - modifying all links in a piece of HTML?
50 10052912 How to sort dictionaries of objects by attribute value in

python?

TABLE 5
Profiles of 25 Participants

Participant Familiar Programming
Languages

#Years of Programming
Experience

P1 python 3.5
P2 python 4.0
P3 java, python 8.0
P4 java, python 6.0
P5 java 4.5
P6 python 7.5
P7 java, python 4.0
P8 java, python, c 10.0
P9 java, python 5.5
P10 java 3.5
P11 java 3.0
P12 java, c# 2.0
P13 java, python, matlab 8.5
P14 java, python, c# 6.5
P15 java 3.5
P16 java, python 4.0
P17 java, python, c++ 8.0
P18 java, python 8.5
P19 java, javascript 2.5
P20 java 3.5
P21 java, python 8.0
P22 java, javascript 7.0
P23 java, python 11.0
P24 java, python 6.5
P25 python, c, c++ 9.0

4. Hengtian is an outsourcing company in China that has more than
2,000 employees and mainly does outsourcing projects for American
and European corporations.
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for all the 50 experimental queries. Therefore, we allocated
25 queries to each participant as follows.

We randomly divided the 50 queries into two equally
sized groups: QG1 and QG2. The queries in QG1 are
indexed by Q1-Q25 and those in QG2 are indexed by Q26-
Q50, as shown in Table 4. From the 25 participants, we first
randomly selected five participants, denoted as PG0 = P1-
P5, who are responsible for conducting a pilot user study to
determine the proper settings of the two key parameters n
and h in Chatbot4QR. Then, we divided the remaining 20
participants evenly into two groups: PG1 = P6-P15 and PG2
= P16-P25, while ensuring that members of the two groups
have comparative years of programming experience.

Table 6 lists the allocation of queries to participants for our
six user studies and the research questions investigated by
each user study. More specifically, the user study 1 is a pilot
user study to investigate RQ1 by randomly selecting ten
queries and allocating the queries to the participants in PG0.
For the other five user studies, we allocated QG1 and QG2 to
PG1 and PG2, respectively. The user study 3 investigates RQ3
by examining the usefulness of the CQs generated by Chat-
bot4QR for the 50 queries. RQ4 is answered by recording the
amount of time spent on the steps of Chatbot4QR during the
user studies 3 and 5. The user studies 2, 4, 5, and 6 constitute a
competitive experiment to investigate RQ5 by comparing the
quality of the top ten SO questions retrieved by Chatbot4QR
and the two kinds of the top ten results retrieved using Web
search engines (e.g., the SO search engine and Google) before
and after interacting with Chatbot4QR. As the participants
interact more with Chatbot4QR, they may gradually learn to
recognize some technical details missed in their initial
queries. Therefore, we required the participants to perform
the user study 2 (i.e., Web Search before Interacting with Chat-
bot4QR) before the user study 3 (i.e., Interaction with Chat-
bot4QR), in order to minimize the learning effect that the
participants may transfer the knowledge learned from Chat-
bot4QR to enhance the queries forWeb search.

Before performing the user studies, the participants are
expected to find a solution for each allocated query task.
Given a query, when searching results using Web search
engines, interacting with Chatbot4QR for evaluating the CQs,
and judging the relevance of SO questions and Web search
results, the participants should be based on the existing tech-
nical context specified in the query and/or their technical
background. For example, for the queryQ6 “Better way to parse
xml”, it has no specified programming language, the partici-
pants can perform the user studies with their preferred

programming languages. For the query Q46 “Choosing ele-
ments from python list based on probability”, it has a program-
ming language Python. The participants should perform the
user studies based on Python, but they can determine the
other technical context, e.g., a Python library, based on their
technical background.

5 EXPERIMENT RESULTS

In this section, we answer the five research questions by con-
ducting the corresponding user studies shown in Table 6.

5.1 RQ1: What are the Proper Settings of the
Parameters n and h in Chatbot4QR?

Motivation. In Chatbot4QR, n and h are two key parameters
for generating CQs and recommending SO questions for
queries. The settings of n and hwill affect the quality of gen-
erated CQs and recommended questions. It is necessary to
figure out the proper settings of the parameters.

Approach. We randomly selected ten queries from the 50
experimental queries and allocated the queries to the five
participants in PG0. Then, we conducted the pilot user study
1 shown in Fig. 5 as follows.

1. CQ generation using different settings of n. We gener-
ated different CQs for each query by setting n from 5
to 50 with a step size 5.

2. Usefulness evaluation of CQs. We gathered the CQs
generated using different values of n for each query.
The participants used the interactive interface of our
Chatbot4QR prototype to evaluate the CQs. Before
evaluation, we gave a tutorial using a video confer-
ence call with the participants to introduce the proto-
type with an example query outside the experimental
query set. Then, the participants evaluated the CQs of
each query by performing two tasks: (1) rate the use-
fulness of each CQ by five grades ranging from 0 to 4,
where 0, 1, 2, 3, and 4 mean ‘strongly useless’, ‘useless’,
‘neutral’, ‘useful’, and ‘strongly useful’, respectively;
and (2) give feedback to the useful CQs. The usefulness
of a CQ is judged by whether the CQ can help recog-
nize any important information missed in a query for
question retrieval.

3. Sensitivity analysis of n. For each setting of n, we
counted the numbers of CQs with different useful-
ness and measured the ratio of useful CQs that are
rated as 3 or 4 for each query. The usefulness of

TABLE 6
The Allocation of Queries to Participants for the Six User Studies Shown in Fig. 5;

and the Research Questions Investigated by Each User Study

User Study No. Investigated Research Questions Allocation of Queries to Participants

1 RQ1 Ten queries randomly selected from Q1-Q50 are allocated to PG0

2 RQ5

QG1 are allocated to PG1,QG2 are allocated to PG2
3 RQ2, RQ4
4 RQ5
5 RQ3, RQ4, RQ5
6 RQ5

.“RQ1-RQ5” are the five research questions. “PG0-PG2” are three participant groups. “Q1-Q50” are the 50 experimental queries. “QG1” and “QG2” are two
query groups.
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skipped CQs was deemed to 0; and we considered
the usefulness of the CQs that were not prompted to
the participants (due to the early termination of
interaction) as unknown, because such CQs were not
evaluated by the participants. Then, we determined
a proper value of n according to the results.

4. Similarity adjustment using different settings of h. Using
the participants’ feedback to the CQs generated with
the proper n, we adjusted the initial semantic simi-
larities of the 10,000 SO questions retrieved for each
query (see Section 4.2) by setting h from 0 to 1 with a
step size 0.1.

5. Relevance evaluation of SO questions. We gathered the
top ten SO questions obtained using different values
of h for each query. The participants evaluated the
relevance of each question by five grades 0-4, where
0, 1, 2, 3, and 4 mean ‘strongly irrelevant’, ‘irrelevant’,
‘neutral’, ‘relevant’, and ‘strongly relevant’, respec-
tively. In the aforementioned video conference, we
explained to the participants that the relevance of a
SO question to a query should be judged by evaluat-
ing the degree of matching between the SO question
and the query task with the specified technical con-
text (i.e., the technical terms appearing in the original
query or given by the participants to the CQs).

6. Sensitivity analysis of h. For each setting of h, we mea-
sured the average performance of the top ten SO
questions obtained for the ten queries using two met-
rics: Pre@k (Precision at k) [32] and NDCG@k (Nor-
malized Discounted Cumulative Gain at k) [31],
which are widely adopted in the IR community.
Pre@k measures the percentage of relevant questions
that are rated as 3 or 4 in the top-k ranking list.
NDCG@k considers the ranking and rating scores of
relevant questions.

Pre@k ¼ # relevant questions in the top-k

k
(3)

NDCG@k ¼ 1

IDCGk

Xk
i¼1

2reli � 1

log2ð1þ iÞ; (4)

where reli is the relevance score of the question at the
ranking position i; and IDCGk represents the maxi-
mum possible DCG score through position k that can
achieve for a query. Then, we determined a proper
setting of h according to the performance results.

Results. Fig. 6shows the numbers of three kinds of CQs
generated for ten queries using different n 2 [5, 50], with
respect to each of the five participants P1-P5 in PG0. “Useful
CQs” are the CQs rated as 3 or 4. “Useless & Neutral CQs”
are the CQs rated as 0, 1, or 2. “Unknown CQs” are the CQs
with unknown usefulness. From the figure, we have the fol-
lowing findings:

� Under each setting of n, the total numbers of CQs gen-
erated for the five participants are different. For exam-
ple, 15 (= 7 + 8) and 18 (= 2 + 16) CQs were generated
for the participants P1 and P2, respectively, when n =
5. This result is because that during the interaction,
Chatbot4QR can dynamically generate subsequent
CQs based on the participants’ feedback to the initially

generated CQs, as illustrated in Fig. 4. In particular,
the participants have their own personalized technical
background; and their feedback to CQs can be varied.
Therefore, it leads to different numbers of CQs.

� There are notable differences among the five partici-
pants with respect to the numbers of the three kinds of
CQs. For example, when n = 5, only eight of the 15
CQs generated for P1 were evaluated as useful, while
P2 evaluated 16 of the 18 generated CQs as useful.
This result indicates that the participants had person-
alized judgement on the usefulness of CQs. Moreover,
there are unknown CQs in the evaluation results of P2
and P5 when n is a little large (e.g., n = 25 for P2),
meaning that some participants may only pay atten-
tion to a limited number of CQs during the interaction.

� For the five participants, at least 93.1 percent (= 27/29)
of the useful CQs are generated by setting n = 15.
Whenn is larger than 15, only one or twoCQs are eval-
uated as useful by P2 and P5, while the number of use-
less, neutral, and unknown CQs increases. Therefore,
we determine that n = 15 is a good setting for
Chatbot4QR.

In Chatbot4QR, the parameter n, i.e., the number of the initial
top similar SO questions used for CQ generation, is suggested
to be set as 15.

Table 7 presents the detailed evaluation results of each
participant on the CQs generated for each query using n =

Fig. 6. The numbers of three kinds of CQs generated for ten queries
using different settings of the parameter n (i.e., ranging from 5 to 50). n
is the number of the initial top similar SO questions used for CQ genera-
tion. “P1-P5” are five participants.
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15. “#Initial CQs” is the number of CQs that are initially
generated by Chatbot4QR before interacting with the par-
ticipants. “#CQs” is the total number of CQs generated
after interacting with each participant. “Ratio of Useful
CQs” is the ratio of useful CQs to the total CQs. We
observe that the values of “#CQs” and “Ratio of Useful
CQs” vary from the participants. For example, for the
query Q5, the participant P3 got seven CQs (i.e., one CQ
was dynamically generated), while the other participants
got eight CQs (i.e., two CQs were dynamically generated).
The ratios of useful CQs for P2, P4, and P5 are more than
0.75 and much higher than those for P1 and P3. These
results show that our chatbot can generate personalized
CQs based on the individual interaction with a participant;
and the participants have personalized judgement on the
usefulness of CQs.

Table 8 presents the average performance of the top ten
SO questions retrieved using different h 2 [0, 1] by leverag-
ing the participants’ feedback to the CQs generated with n
= 15. From the table, we have the following findings:

� The performance achieved with a positive h is much
better than that achieved with h = 0.0, indicating that
the participants’ feedback to CQs can indeed help
retrieve more relevant SO questions.

� As h increases from0.0 to 1.0, the Pre@k andNDCG@k
values increase first until reach a peak; thereafter they
decreases. This result can be explained by the fact that
a query typically contains only a few keywords, a rela-
tively large h can overweight the user’s technical feed-
back. Consequently, the recommended questions can
match the user’s technical requirements perfectly but
are irrelevant to the programming problem.

� The optimal Pre@1 and NDCG@1 are achieved when
h = 0.3 or 0.4. When k = 5 and 10, the optimal Pre@k
and NDCG@k are achieved with h = 0.2. Based on
these results, there are two proper settings of h

depending on the user’s desired number of recom-
mended questions. If a user focuses on the top one
question, it is suggested to set h = 0.3 or 0.4, otherwise
h = 0.2 is suggested. Moreover, in terms of Pre@1 and
NDCG@1, the performance achieved with h = 0.2 is
close to the optimal performance. Therefore, it is also
a simple and good suggestion to set h = 0.2, regardless
of the value of k.

In Chatbot4QR, for simplicity, the weight coefficient h in
Eq. (1) used for generating the recommended SO questions is
suggested to be set as 0.2.

TABLE 7
Evaluation of the CQs Generated Using the Initial Top 15 Similar SO Questions Retrieved

for Ten Queries (i.e., Setting the Parameter n = 15)

Query No. #Initial CQs P1 P2 P3 P4 P5

#CQs
Ratio of

Useful CQs
#CQs

Ratio of
Useful CQs

#CQs
Ratio of

Useful CQs
#CQs

Ratio of
Useful CQs

#CQs
Ratio of

Useful CQs

5 6 8 0.500 8 0.750 7 0.429 8 0.750 8 0.875
14 4 5 0.400 8 0.875 5 0.600 6 1.000 7 0.857
15 2 3 0.667 3 1.000 3 1.000 3 1.000 3 1.000
21 4 5 0.800 5 1.000 5 0.600 6 0.833 5 0.800
26 6 7 0.429 8 0.875 7 0.429 7 0.571 7 0.429
31 2 3 1.000 3 1.000 3 1.000 3 0.667 3 1.000
35 1 2 1.000 2 1.000 2 1.000 2 1.000 2 0.500
42 3 4 0.750 4 0.750 4 0.500 4 0.750 4 0.500
45 2 3 1.000 3 1.000 3 0.667 2 0.500 3 0.667
48 5 5 0.400 5 0.800 5 0.400 6 0.667 5 0.600

“P1-P5” are five participants. “#Initial CQs” is the number of CQs that are initially by Chatbot4QR before interacting with the participants. “#CQs” is the
number of CQs eventually generated by Chatbot4QR based on the participants’ personalized feedback to CQs.

TABLE 8
The Average Performance of the Top Ten SO Questions Retrieved by Chatbot4QR

for Ten Queries Using Different Settings of the Parameter h (i.e., Ranging From 0.0 to 1.0)

h Pre@1 Pre@5 Pre@10 NDCG@1 NDCG@5 NDCG@10

0.0 0.480 0.456 0.358 0.453 0.506 0.558
0.1 0.720 0.652 0.518 0.653 0.728 0.788
0.2 0.840 0.680 0.550 0.741 0.764 0.821
0.3 0.900 0.648 0.502 0.783 0.743 0.790
0.4 0.900 0.616 0.482 0.783 0.727 0.764
0.5 0.880 0.576 0.462 0.765 0.697 0.736
0.6 0.820 0.556 0.442 0.719 0.679 0.708
0.7 0.800 0.536 0.430 0.710 0.665 0.698
0.8 0.760 0.536 0.428 0.675 0.650 0.681
0.9 0.760 0.516 0.414 0.675 0.625 0.664
1.0 0.760 0.516 0.398 0.675 0.624 0.653

h is the Weight Coefficient of the Participants’ Feedback to CQs in Eq. (1).
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5.2 RQ2: How Effective Can Chatbot4QR
Generate CQs?

Motivation. Our work is the first attempt to automatically
generate CQs to interactively refine queries with the user
involvement, in order to retrieve more relevant technical
questions from Q&A sites. We want to evaluate the effec-
tiveness of Chatbot4QR for CQ generation and verify
whether the CQs can help users recognize missing technical
details in queries.

Approach.We conducted a user study (i.e., the user study 3
shown in Fig. 5) to evaluate the CQs generated by Chat-
bot4QR for the 50 experimental queries, under the setting of
n = 15. To the best of our knowledge, there is a similar work
proposed by Rao et al. [17], named EVPI, which aims to gen-
erate CQs for asking good technical questions in Q&A sites.
Unlike Chatbot4QR that can automatically generate CQs,
EVPI extracts the existing CQs in the comment sections of
the top ten similar questions retrieved using Lucene. Fig. 7
shows two example CQs in the comment section of a SO
question,5 We implemented EVPI using the source code
released at Github,6 and used EVPI to generate CQs for
each experimental query.

The 20 participants in PG1 and PG2were required to eval-
uate the two kinds of CQs (one kind is generated by Chat-
bot4QR and the other kind is generated by EVPI) for their 25
allocated queries in QG1 and QG2, respectively. We modi-
fied the interactive interface of our Chatbot4QR prototype to
run for the CQs generated by EVPI. More specifically, the
prototype automatically prompted each query and the two
kinds of CQs generated for the query in random order. The
participants did not know which kind of CQs were gener-
ated by Chatbot4QR or EVPI. After completing the evalua-
tion of CQs for a query, the participants needed to choose a
preferred kind of CQs (i.e., the first or the second prompted
kind). Before starting the evaluation, we launched a video
conference to introduce the modified prototype to the partic-
ipants with an example query. Then, the participants used
the prototype to evaluate the two kinds of CQs for each allo-
cated query by performing three tasks:

1. Rate the usefulness of each CQ by five grades 0-4,
which are defined in Section 5.1.

2. Give feedback to the useful CQs.
3. Specify the preferred kind of CQs (when both Chat-

bot4QR and EVPI generated a set of CQs).
Note that the three tasks are not mandatory. The partici-

pants had the freedom to choose to perform any of the tasks.
More specifically, the participants can skip a CQ if they
think it is useless or feel difficult to answer. The participants

can terminate the interaction with the chatbot early when
they think that they have answered enough CQs for a query.
If the participants have no preference for any of the two
kinds of CQs, they can skip the Task 3. Since the participants
may not know some technical terms asked in the CQs, they
can search for unfamiliar technical terms (e.g., OpenCV and
Keras) online during the interaction. Moreover, we asked the
participants to manually record the amount of time spent on
the interaction with Chatbot4QR for 25 allocated queries, as
the participants can take a short break during the user study
in case of personal work or fatigue. After the user study, we
interviewed the participants to obtain their comments about
the CQs produced by both approaches.

For each query, we counted the numbers of CQs gener-
ated by EVPI and Chatbot4QR, and measured the average
ratio of useful CQs evaluated by the ten participants who
were responsible for the query. We considered the useful-
ness of skipped CQs as 0 and excluded the CQs that were
not displayed to the participants as the usefulness of such
CQs was unknown. We also analyzed the participants’ pre-
ferred kinds of CQs for the queries that have CQs generated
by both approaches. We first identified two sets of partici-
pants for a query who preferred Chatbot4QR or EVPI,
which are denoted as PChatbot4QR and PEVPI , responsively.
Then, we defined the “preference ratio” of the ten participants
for the query as jPChatbot4QR j : jPEVPI j .

Furthermore, according to the 20 types of SO tags shown
in Table 1 and the three heuristic rules for CQ generation
described in Section 3.2.2, Chatbot4QR can generate CQs
that ask for 40 types of technical details, i.e., 20 types of SO
tags and the versions. To examine whether the CQs that ask
for some specific types of technical details would be more
likely to be perceived as useful by users, we counted the
numbers of CQs that ask for different types of technical
details. We also measured the ratio of useful CQs that ask
for each type.

Results. Table 9 presents the numbers of CQs generated by
Chatbot4QR and EVPI, as well as the average ratio of useful
CQs for each query. For Chatbot4QR, we present the number
of initially generated CQs and the average number of CQs
(i.e., “Avg. #CQs”) obtained by the ten participants in PG1 or
PG2 after interaction, for each query. The bottom row shows
the overall average results of both approaches on the 50
queries. From the table, we have the following findings:

� As for EVPI, it generated 1.3 CQs for a query on aver-
age and generated zero CQs for ten queries. The over-
all ratio of useful CQs for 50 queries is 16.7 percent,
meaning that only a few CQs generated for a query
were useful. Obviously, EVPI failed to generate any
useful CQs for some vague queries. For example, the
query Q6, i.e., “Better way to parse xml”, is vague due
to the missing of a specific programming language.
However, no CQwas generated by EVPI for Q6.

� As for Chatbot4QR, on average for a query, it initially
generated 4.1 CQs and finally generated 5.1 CQs after
interacting with the participants. This result means
that on average one CQ was dynamically generated
for a query based on the participants’ feedback. More
specifically, 0-2.2 new CQs were generated for the 50
queries during the interaction. We observe that the

Fig. 7. Two CQs in the comment section of a SO question.

5. https://stackoverflow.com/questions/22867636
6. https://github.com/raosudha89/ranking_clarification_questions
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number of CQs generated by Chatbot4QR is approxi-
mately four times the number of CQs generated by
EVPI. Compared with EVPI, the effectiveness of
Chatbot4QR depends on the number of increased
useful CQs. If more than 16.7 percent of the increased
CQs were useful, the effectiveness of Chatbot4QR
would be better than that of EVPI. For each approach,
we counted the number of times the generated CQs

are evaluated by the participants and the number of
times the CQs are evaluated as useful, as shown in
Table 10. Among the 1,915 (=2,565-650) additional
evaluations of the CQs generated by Chatbot4QR,
1,348 (i.e., 70.4 percent) are useful. Moreover, as listed
in Table 9, the overall ratio of useful CQs that are gen-
erated by Chatbot4QR is 60.8 percent for the 50
queries. For 37 queries, the average ratios of useful
CQs generated by Chatbot4QR are no less than 50
percent. In contrast, the average ratios of useful CQs
generated by EVPI are no less than 50 percent for
only four queries, i.e., Q33, Q35, Q44, and Q48. As
demonstrated in the results, Chatbot4QR in CQ gen-
eration for a query is more effective than EVPI.

Fig. 8 shows the numbers of queries with different pref-
erence ratios. There are 18 queries with the preference ratio
‘10:0’, meaning that for these queries, all the ten participants
preferred the CQs generated by Chatbot4QR. For the nine
queries with ‘5:3’, ‘8:1’, and ‘9:0’, one or two participants
had no preference on the two kinds of CQs. We observe that
most of the participants preferred the CQs generated by
Chatbot4QR for the 40 queries (that have CQs generated by
both approaches).

Two major comments about EVPI given by the partici-
pants are: (1) most of the generated CQs are too specific to a
particular problem and often not useful for retrieving rele-
vant questions, e.g., the CQ “What exactly is a week number in
this context, and what does ‘date.weekday’ have to do with it?”
generated for the query Q10; and (2) even some CQs might
be useful but they are difficult to answer with a few words,
e.g., the CQ “What output did you get?” generated for Q7.
These issues can be explained by the objective of EVPI that
it aims at generating CQs to help users refine technical ques-
tions, so that the questions can be easier to answer. There-
fore, most of the CQs generated by EVPI may not be useful
for question retrieval.

TABLE 9
Evaluation of the CQs Generated by Chatbot4QR and EVPI

Query
No.

CQs Generated by Chatbot4QR CQs Generated by EVPI

#Initial
CQs

Avg.
#CQs

Avg. Ratio of
Useful CQs

#CQs
Avg. Ratio of
Useful CQs

1 2 3 0.833 1 0.400
2 3 4 0.750 2 0.250
3 3 4.4 0.565 2 0.000
4 4 4.6 0.590 0 –
5 7 9 0.522 1 0.000
6 5 6 0.500 0 –
7 3 4 0.425 1 0.000
8 9 9.9 0.314 1 0.400
9 2 2.4 0.750 1 0.000
10 4 5.9 0.607 1 0.400
11 3 4.9 0.590 2 0.200
12 5 6.3 0.412 0 –
13 2 3 0.733 1 0.000
14 5 7.1 0.541 0 –
15 3 4 0.775 2 0.200
16 7 9 0.496 1 0.000
17 2 2.8 0.783 4 0.000
18 6 7.7 0.488 1 0.000
19 6 8.2 0.449 0 –
20 3 4 0.900 1 0.000
21 5 6.1 0.624 0 –
22 4 5 0.620 2 0.150
23 3 3 0.500 3 0.000
24 2 2.8 0.750 4 0.325
25 6 7.1 0.577 2 0.250
26 6 7 0.471 0 –
27 4 4.5 0.512 0 –
28 3 4 0.775 2 0.250
29 4 4 0.700 0 –
30 3 4.5 0.710 2 0.250
31 2 3 0.800 2 0.200
32 5 6 0.642 2 0.300
33 3 3.2 0.767 1 0.600
34 7 8.9 0.479 1 0.200
35 2 3.6 0.725 1 0.700
36 5 6.4 0.626 2 0.200
37 5 7.3 0.664 1 0.300
38 8 8.4 0.419 1 0.000
39 5 5 0.553 1 0.100
40 4 5 0.460 2 0.300
41 3 4 0.775 2 0.300
42 4 4.9 0.565 2 0.100
43 4 4.8 0.595 3 0.267
44 4 5 0.480 1 0.600
45 2 3 0.933 1 0.100
46 4 4 0.600 2 0.300
47 2 2.7 0.483 0 –
48 7 7.1 0.377 1 0.600
49 4 4.8 0.570 1 0.100
50 2 2 0.600 1 0.000

Avg. 4.1 5.1 0.608 1.3 0.167

For a query, “#Initial CQs” is the number of CQs that are initially generated
by Chatbot4QR; “Avg. #CQs” is the average number of CQs generated by
Chatbot4QR after the interaction with ten participants; and “#CQs” is the
number of CQs generated by EVPI.

TABLE 10
Statistics on the Evaluation of the CQs Generated

by Chatbot4QR and EVPI

Approach #CQs Evaluated
by the Participants

#Useful CQs Evaluated
by the Participants

EVPI 650 131
Chatbot4QR 2,565 1,479

Fig. 8. Preference ratios of the CQs that are generated by Chatbot4QR
and EVPI for 40 queries.
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Table 11 presents the CQs generated by Chatbot4QR for
the two queries Q18 and Q42. For the CQs related to each
query, we present (1) the scores for ranking the CQs (see Sec-
tion 3.2.2), (2) the orders of prompting the CQs to a partici-
pant (i.e., P16 for Q18 and P7 for Q42), and (3) the usefulness
and feedback given by the participant. The two CQs without
scores are dynamically generated based on the participants’
feedback, e.g., P16’s feedback ‘windows’ to the third CQ of
Q18. We observe that the ratios of useful CQs for Q18 and
Q42 are 57.1 and 60.0 percent, respectively. We can use the
final two kinds of feedback collected from all CQs of a query
q (i.e., the positive feedback pfbðqÞ and negative feedback
nfbðqÞ) to refine q. More specifically, pfbðqÞ and nfbðqÞ are
used to adjust the initial semantic similarities of SO questions
retrieved for q, as demonstrated in Eq. (1).

Table 12 presents the numbers of CQs and useful CQs
generated by Chatbot4QR that ask for 30 types of techni-
cal details (including 18 technique types of SO tags and
the versions of 12 technique types). The types with ‘(v)’
are the versions of the corresponding technique types. For
example, ‘programming language (v)’ means the version of a

programming language. The first row shows that there are
370 CQs that ask for programming languages; and 350 (i.e.,
94.6 percent) of the CQs are evaluated as useful by the partic-
ipants. We observe that the top five types of technical details
asked by the maximum numbers of CQs are ‘programming
language (v)’, ‘programming language’, ‘library’, ‘framework’,
and ‘operating system’. The top five types with the highest
ratios of useful CQs are ‘non-OS system (v)’, ‘model/algorithm
(v)’, ‘programming language’, ‘programming language (v)’, and
‘database’. Moreover, excluding the version types, the top
five technique types with the highest ratios of useful CQs are
‘programming language’, ‘database’, ‘operating system’, ‘library’,
and ‘technique’.

On average, Chatbot4QR generates approximately five CQs
for a query and 60.8 percent of the CQs are helpful for users to
recognize missing technical details in the query. The CQs gen-
erated by Chatbot4QR are much better than the ones generated
by the EVPI approach (as only 16.7 percent of the CQs gener-
ated by EVPI are helpful). Moreover, the CQs generated by
Chatbot4QR that ask for some specific types of technical details
are more likely to be perceived as useful by users. For the 20
types of SO tags shown in Table 1, the top five types with the
highest ratios of useful CQs are ‘programming language’,
‘database’, ‘operating system’, ‘library’, and ‘technique’.

5.3 RQ3: CanChatbot4QRRetrieveMoreRelevant
SOQuestions Than the State-of-the-Art Question
Retrieval andQuery Expansion Approaches?

Motivation. The ultimate goal of Chatbot4QR is to retrieve
accurate SO questions for users based on their feedback to
the CQs. Although it has been validated in RQ2 that most of
the CQs generated by Chatbot4QR for a query are useful, it
is necessary to check whether the refined queries (i.e., the
participants’ feedback to CQs) can improve the relevance of
recommended questions.

Approach. We retrieved the top ten SO questions for the
50 experimental queries based on the participants’ feed-
back to the CQs of each query, under the setting of h = 0.2.
Then, we conducted a user study (i.e., the user study 5
shown in Fig. 5) to evaluate the SO questions. We com-
pared Chatbot4QR with several existing question retrieval
and query expansion approaches. More specifically, we
summarized two state-of-the-art approaches used for
question retrieval:

TABLE 11
The CQs Generated by Chatbot4QR for the Two Queries Q18 and Q42 in Table 4

For the CQs related to each query, we present the scores for ranking the CQs, the orders of the CQs prompted to a participant (i.e., P16 for Q18 and P7 for Q42),
as well as the usefulness and feedback given by the participant. pfbðqÞ and nfbðqÞ are the positive feedback and negative feedback to all the CQs of a query q,
respectively.

TABLE 12
The Numbers of CQs and Useful CQs Generated for the
50 Queries by Chatbot4QR That Ask for Different Types
of Technical Details, as Well as the Ratios of Useful CQs

Each type with “(v)” means the version of the corresponding technique type.
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� Lucene: This is the Lucene search engine which
retrieves SO questions similar to a query based on the
Lucene index built for a question repository [8]. We
implemented Lucene using its source code7 released
at Github.

� Word Embedding (WE): This is the word embedding-
based question retrieval approach widely used in
recent work [5], [6]. We implemented WE using the
source code8 released by Huang et al. [5].

A rich body of research work improves the performance
of IR systems by reformulating queries using relevant terms
extracted from thesauruses or similar resources. We sum-
marized three major query expansion approaches:

� WordNet (WN): This approach expands a query
with the synonyms of keywords in WordNet. We
implemented the WordNet-based query expansion
approach proposed by Lu et al. [12].

� QECK: This approach expands a query using the
important keywords contained in the top similar SO
question-and-answer pairs [8]. The importance of a
keyword is measured by considering both the TF-IDF
score and the scores of SO questions and answers.We
implemented QECK according to the details pre-
sented in the paper.

� Tag Recommendation (TR): There are a number of
papers on recommending SO tags for a technical
question [36], [37], [38]. These papers are similar to
Chatbot4QR to a certain extent as all of them focus
on finding relevant SO tags for a target (a question
or a query). We viewed the TR approaches as a spe-
cific kind of query expansion approaches, to check
whether they can be used to recommend SO tags for
queries. We implemented the neutral network-based
TR approach proposed by Liu et al. [38] using the
open-source code9 and expanded a query with the
top ten recommended SO tags.

We built nine baselines by combining the two retrieval
approaches: Lucene and WE, and four query expansion
approaches: WN, QECK, TR, and IQR (which refers to our
interactive query refinement approach used in Chatbot4QR).
The baselines are described as follows.

1. Lucene: This is the Lucene approach described above.
2. WE: This is theWE approach described above.
3. Lucene+WN: This approach uses Lucene to retrieve

questions after expanding a query usingWN.
4. Lucene+QECK: This approach uses Lucene to retrieve

questions after expanding a query using QECK.
5. Lucene+TR: This approach uses Lucene to retrieve

questions after expanding a query using TR.
6. Lucene+IQR: This approach uses Lucene to retrieve

questions based on the query refined using IQR, i.e.,
the user’s positive and negative feedback to CQs.
More specifically, We first retrieved similar ques-
tions by applying the query and positive feedback to
Lucene. Then, we removed the similar questions that
contain any negative feedback.

7. WE+WN: This approach uses WE to retrieve ques-
tions after expanding a query usingWN.

8. WE+QECK: This approach uses WE to retrieve ques-
tions after expanding a query using QECK.

9. WE+TR: This approach usesWE to retrieve questions
after expanding a query using TR.

Note that Chatbot4QR can be simply viewed as a combi-
nation of WE+IQR. We applied the eight baselines except
Lucene+IQR to the 50 queries and obtained eight lists of the
top ten SO questions for each query. Since IQR is a personal-
ized query refinement approach, we applied Lucene+IQR to
retrieve the top ten questions based on each participant’s
feedback to the CQs of each query. Then, for each partici-
pant, we collected the different top ten questions retrieved
for each query using Chatbot4QR and nine baselines. The
participants evaluated the relevance of the questions by five
grades 0-4, as defined in Section 5.1.

As the participants may probably have different preferen-
ces of techniques (e.g., the familiar programming languages
shown in Table 5), they may get different SO questions
retrieved by Chatbot4QR and Lucene+IQR for a query. More-
over, the participants may have their own judgement on the
relevance of the questions. Therefore, wemeasured the over-
all Pre@k or NDCG@k performance of an approach A as its
average performance evaluated by the 20 participants. More
specifically, given a specific Pre@k or NDCG@k metric m,
for each participant P , we computedm of each query accord-
ing to P ’s evaluation results of the SO questions retrieved by
A. Then, we computed the average m of the 25 queries allo-
cated to P . Finally, we computed the overallm ofA, denoted
as mA, with respect to the average of the m values of 20 par-
ticipants. Based on the overall performance results, we mea-
sured the “improvement degree” of Chatbot4QR over each
baselineB in terms of a specificmetricm as

mChatbot4QR�mB

mB
.

Furthermore, we examined whether the improvement of
Chatbot4QR (denoted as C) over a baseline B is statistically
significant. Considering that the participants may obtain dif-
ferent SO questions and have personalized benchmarks of
relevant questions for a query, we defined a metric
“significant ratio” to measure the statistical significance of the
performance improvement of C over B as follows. For each
participant, given a specific Pre@k or NDCG@kmetricm, we
built two samples for C andB, respectively, by gathering the
m values of C andB on the 25 assigned queries. We used the
Wilcoxon signed-rank test [39] to test the significance of C
over B based on the two samples with three p-values {0.05,
0.01, 0.001}. For each p-value p, we identified the set of partic-
ipants whose samples of C are significantly better than those
of B, which are denoted as SigPm;pðC;BÞ. Then, the signifi-
cant ratio ofC overB, givenm and p, is measured as

SigRm;pðC;BÞ ¼ jSigPm;pðC;BÞ j
# participants

: (5)

Finally, we chose the maximum significant ratio and the
corresponding p-value.

As described in Section 5.2, the CQs generated by Chat-
bot4QR can ask for different types of technical details. In
RQ2, we measured the ratios of useful CQs that ask for 30
types of technical details (see Table 12). We further mea-
sured the contributions of the participants’ feedback to the

7. https://github.com/apache/lucene-solr
8. https://github.com/tkdsheep/BIKER-ASE2018
9. https://pan.baidu.com/s/1slujtU1
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CQs that ask for different types of technical details, in order
to retrieve relevant questions. More specifically, for every
feedback to a CQ of a query, we produced a list of the top
ten SO questions by adjusting the initial semantic similari-
ties of the 10,000 questions (see Section 4.2) using the single
feedback. The participants evaluated the relevance of the
questions that were not evaluated before for each allocated
query. Then, for a query q, we computed the performance
of a specific Pre@k and NDCG@k metric m improved by
each feedback fb, denoted as Impmðq; fbÞ, as follows.

� If fb is a technique (e.g., a programming language)
or a version given to an initially generated CQ,
then Impmðq; fbÞ is measured as mChatbot4QRðq; fbÞ �
mInitialðqÞ. mChatbot4QRðq; fbÞ is the m value of the top-
k questions retrieved for q using Chatbot4QR by
leveraging fb; andmInitialðqÞ is the m value of the ini-
tial top-k questions retrieved for q using our two-
phase method.

� If fb is a version of a technique feedback fb0, then
Impmðq; fbÞ is measured as mChatbot4QRðq; fbÞ �
mChatbot4QRðq; fb0Þ.

Finally, we measured the average performance improve-
ment achieved using the participants’ feedback that belongs
to a specific type of technical details. For each type, we also
measured the average performance improvement achieved
using the participants’ feedback to all CQs of the queries
that contain any feedback of the type.

Results.Table 13 presents the performance of the top ten SO
questions retrieved using ten approaches. Table 14 presents

the improvement degrees and themaximum significant ratios
of Chatbot4QR over the nine baselines. “ImpD(%)” is the
improvement degree expressed as a percentage; and “(p, SigR
(%))” are the maximum significant ratio expressed as a per-
centage and the correspondingp-value p. From the two tables,
we have the following findings:

� Chatbot4QR achieves the best performance in terms
of both Pre@k and NDCG@k. The result demon-
strates that the queries refined by IQR (i.e., our inter-
active query refinement approach) can improve the
quality of SO questions retrieved byWE.

� Chatbot4QR improves the two popular baselinesWE
and Lucene by at least 54.6 percent and 97.8 percent,
respectively. Chatbot4QR significantly outperforms
Lucene for all the participants in terms of Pre@1,
Pre@5, and NDCG@5. Although Chatbot4QR does
not significantly outperform WE for all the partici-
pants, the significant ratios are all higher than 70 per-
cent. This result indicates that the improvement of
Chatbot4QR over WE is significant for at least 14 of
the 20 participants.

� Lucene+IQR improves Lucene by at least 22.91 per-
cent, which further demonstrates the effectiveness of
our IQR approach in helping users refine queries
and retrieve more relevant questions using Lucene.

� WE outperforms Lucene by at least 24.48 percent.
This is because that WE can retrieve semantically
similar questions for queries, while Lucene cannot
due to the lexical gaps issue.

TABLE 13
Evaluation of the SO Questions Retrieved by Ten Approaches

Approach Pre@1 Pre@5 Pre@10 NDCG@1 NDCG@5 NDCG@10

Lucene 0.414 0.332 0.279 0.369 0.369 0.396
Lucene+WN 0.308 0.237 0.216 0.300 0.283 0.315
Lucene+QECK 0.278 0.190 0.156 0.251 0.245 0.260
Lucene+TR 0.250 0.203 0.169 0.243 0.246 0.265
Lucene+IQR 0.540 0.434 0.343 0.480 0.478 0.496
WE 0.530 0.416 0.348 0.484 0.473 0.500
WE+WN 0.300 0.236 0.188 0.285 0.281 0.299
WE+QECK 0.310 0.232 0.201 0.269 0.269 0.293
WE+TR 0.352 0.232 0.209 0.319 0.289 0.318
Chatbot4QR 0.838 0.670 0.548 0.765 0.731 0.760

TABLE 14
Improvement Degrees and the Maximum Significant Ratios of Chatbot4QR Over Nine Baselines

Baseline Pre@1 Pre@5 NDCG@1 NDCG@5

ImpD(%) (p, SigR(%)) ImpD(%) (p, SigR(%)) ImpD(%) (p, SigR(%)) ImpD(%) (p, SigR(%))

Lucene 102.4 (0.05, 100.0) 102.1 (0.05, 100.0) 107.0 (0.01, 95.0) 97.8 (0.01, 100.0)
Lucene+WN 172.1 (0.05, 100.0) 182.9 (0.01, 100.0) 154.5 (0.05, 100.0) 158.5 (0.01, 100.0)
Lucene+QECK 201.4 (0.01, 100.0) 251.9 (0.01, 100.0) 205.2 (0.05, 100.0) 197.6 (0.001, 100.0)
Lucene+TR 235.2 (0.01, 100.0) 229.7 (0.001, 100.0) 214.0 (0.01, 100.0) 197.3 (0.001, 100.0)
Lucene+IQR 55.2 (0.05, 85.0) 54.2 (0.05, 95.0) 59.4 (0.05, 90.0) 52.7 (0.05, 100.0)
WE 58.1 (0.05, 70.0) 60.9 (0.05, 95.0) 57.8 (0.05, 80.0) 54.6 (0.01, 95.0)
WE+WN 179.3 (0.05, 100.0) 183.9 (0.01, 100.0) 168.4 (0.01, 100.0) 160.0 (0.001, 100.0)
WE+QECK 170.3 (0.05, 100.0) 189.3 (0.01, 100.0) 184.5 (0.01, 100.0) 171.9 (0.001, 100.0)
WE+TR 138.1 (0.05, 100.0) 189.3 (0.001, 100.0) 139.3 (0.05, 100.0) 152.8 (0.001, 100.0)

“ImpD” is the improvement degree. “(p, SigR)” are the maximum significant ratio and the corresponding p-value.
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� WE outperforms WE+WN, WE+QECK, and WE+TR
by at least 50.57 percent. Lucene outperforms Lucene
+WN, Lucene+QECK, and Lucene+TR by at least 22.93
percent. These results may indicate that the three
automatic query expansion approaches (i.e., WN,
QECK, and TR) are not suitable for reformulating
queries to improve the performance of question
retrieval.

Table 15 presents the average performance improvement
of question retrieval achieved using the participants’ feed-
back to the CQs that ask for 29 types of technical details. For
each type, “# Cases” is the number of times a participant’s
feedback of the type is used for question retrieval; “Avg.
Imp” is the average Pre@k or NDCG@k improvement
achieved using the participants’ feedback of the type; and
“Avg. Imp by All” is the average Pre@k orNDCG@k improve-
ment achieved using the participants’ feedback to all CQs of
the queries that contain any feedback of the type. The type
‘tool (v)’ in Table 12 has no improvement result in Table 15,
since none of the three CQs that ask for the type of technical
details are evaluated as useful and thus there is no feedback
of the type used for question retrieval. We find that the feed-
back of some types has positive improvementwhile the feed-
back of other types has no or negative improvement. For
example, in terms of Pre@1, the improvement of the three
types ‘programming language’, ‘database (v)’, and ‘operating sys-
tem’ are 0.318, 0.000, and -0.207, respectively. We also find
that the improvement achieved using the feedback of a type
can be different in terms of different metrics. For example,

the feedback of ‘operation system’ has a negative impact on
the Pre@1 and NDCG@1 performance, however, it has posi-
tive improvement in terms of Pre@5 and NDCG@5. The ver-
sion types have very low improvement. One of the possible
reasons could be that many SO questions do not explicitly
specify the versions of the involved techniques, especially in
the question title and tags. To effectively leverage the feed-
back of versions, there needs a method for inferring the ver-
sions of techniques from the content (e.g., code snippets) of
questions. Moreover, the values of “Avg. Imp by All” are gen-
erally higher than those of “Avg. Imp”, indicating that better
performance is achieved by integrating the feedback to all
CQs of a query. The top three types with the maximum per-
formance improvement are the same, i.e., ‘programming
language’, ‘database’, and ‘library’, in terms of all metrics.

Compared with the nine baselines that involve two question
retrieval approaches and four query expansion approaches, Chat-
bot4QR retrieves more relevant SO questions for queries. The
improvement degree of Chatbot4QR over the word embedding-
based question retrieval approach (WE) is at least 54.6 percent.
Furthermore, the improvement of Chatbot4QR over WE is sta-
tistically significant for more than 70 percent of the participants.
Moreover, the participants’ feedback to the CQs that ask for dif-
ferent types of technical details has different contributions to
question retrieval. The top three types with the maximum contri-
butions are ‘programming language’, ‘database’, and ‘library’.

TABLE 15
The Average Performance Improvement of SO Question Retrieval Achieved Using the Participants’ Feedback

to the CQs Generated by Chatbot4QR That Ask for Different Types of Technical Details

Type #Cases Pre@1 Pre@5 NDCG@1 NDCG@5

Avg. Imp Avg. Imp by All Avg. Imp Avg. Imp by All Avg. Imp Avg. Imp by All Avg. Imp Avg. Imp

programming language 355 0.318 0.363 0.243 0.299 0.263 0.333 0.248 0.307
programming language (v) 454 0.075 0.326 0.040 0.264 0.065 0.285 0.039 0.265
database 15 0.333 0.333 0.173 0.240 0.236 0.271 0.179 0.268
database (v) 8 0.000 0.375 0.000 0.325 0.000 0.317 0.000 0.334
operating system 92 -0.207 0.217 0.039 0.241 -0.120 0.266 0.003 0.264
operating system (v) 45 0.000 0.200 0.018 0.276 0.000 0.276 0.016 0.290
library 183 0.279 0.421 0.118 0.280 0.224 0.381 0.133 0.293
library (v) 37 -0.081 0.324 -0.022 0.254 -0.011 0.275 -0.008 0.242
technique 56 0.054 0.464 -0.004 0.289 0.076 0.397 0.019 0.297
class 35 -0.057 0.343 -0.063 0.217 -0.094 0.306 -0.071 0.240
class (v) 13 0.000 0.077 0.000 0.431 0.000 0.021 -0.014 0.262
non-PL language 33 -0.364 0.273 0.012 0.406 -0.322 0.227 -0.063 0.307
non-PL language (v) 20 0.000 0.450 0.010 0.350 0.000 0.378 -0.028 0.259
format 40 -0.175 0.175 -0.035 0.200 -0.108 0.140 -0.036 0.202
format (v) 61 0.000 0.197 0.013 0.216 0.000 0.165 0.004 0.186
model/algorithm 5 -0.400 0.200 -0.120 -0.000 -0.107 0.333 -0.109 0.057
model/algorithm (v) 21 0.000 -0.143 0.010 0.124 0.000 -0.113 0.008 0.099
tool 15 0.000 0.200 0.040 0.213 0.036 0.196 0.047 0.233
framework 63 0.127 0.286 0.029 0.235 0.116 0.312 0.052 0.245
framework (v) 17 -0.176 0.235 -0.047 0.141 -0.024 0.267 -0.017 0.212
design pattern 3 0.000 0.333 0.067 0.467 0.000 0.311 0.066 0.521
environment 14 -0.143 0.143 -0.014 0.171 -0.062 0.248 -0.024 0.199
environment (v) 1 0.000 0.000 0.000 0.200 0.000 0.533 0.000 0.276
non-OS system 14 0.000 0.500 0.086 0.400 -0.038 0.479 0.046 0.403
non-OS system (v) 1 0.000 1.000 0.000 0.400 0.000 0.933 0.000 0.401
platform 3 0.000 1.000 0.000 0.200 0.000 1.000 0.000 0.333
engine 1 0.000 0.000 0.000 0.200 0.000 0.000 -0.054 0.025
server 1 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.203
browser 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.083

Each type with “(v)” means the version of the corresponding technique type. For each type, “#Cases” is the number of times a participant’s feedback of the type is
used to adjust the initial semantic similarities of SO questions of a query; “Avg. Imp” is the average Pre@k or NDCG@k improvement achieved using the partic-
ipants’ feedback of the type; “Avg. Imp by All” is the average Pre@k or NDCG@k improvement achieved using the participants’ feedback to all CQs of the
queries that contain any feedback of the type
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5.4 RQ4: How Efficient is Chatbot4QR?

Motivation. In Chatbot4QR, several resources need to be
built offline, including the Lucene index of SO questions,
two language models, and the categorization and version-
frequency information of SO tags. Although the offline
processing takes a substantial amount of time, the built
resources are reusable. We are interested in finding out the
response time that Chatbot4QR can respond to a user once
the user submits a query. If the response time is too long,
our approach may not be acceptable even if it is effective in
generating useful CQs and retrieving relevant SO questions.
Therefore, it is essential to examine whether Chatbot4QR is
efficient for practical uses.

Approach. We recorded the amount of time that Chat-
bot4QR, WE, and Lucene spent on the offline processing of
SO data and online question retrieval during our experi-
ments. After the user study 3, we asked the participants to
report their time spent on interacting with our chatbot. We
did not consider the time costs of the other seven baselines
because Lucene+IQR is based on our IQR and the perfor-
mance of other baselines is too low (see Table 13).

Results. Table 16 presents the time costs of the three
approaches. From the table, we have the following findings:

� As for the offline processing, the processing time of
Chatbot4QR is 91.15 hours, which is much higher
than those of Lucene and WE. This is because that the
offline processing of Chatbot4QR contains three
main parts: (1) the semi-automatic categorization of
SO tags (74 hours); (2) the building of the Lucene
index of SO questions and two language models
(8.52+7.38 = 15.9 hours); and (3) the tag identification
from SO questions (1.25 hours). Since the resources
are reusable and can be incrementally updated (as
explained in Section 3.1.5), the relatively high time
cost of the offline processing of Chatbot4QR may not
be a problem for practical uses.

� As for the online question retrieval for a query, the
processing time of Chatbot4QR contains three parts
(as shown in Table 16): (1) Response is the amount of
time required to respond to a participant (1.30 sec-
onds), including the two-phase question retrieval
and CQ generation; (2) Interaction is the amount of
time that a participant spent on the interaction with
our chatbot (about 42 seconds); and (3) Recommenda-
tion is the amount of time required to adjust the simi-
larities of 10,000 SO questions and produce the top
ten recommended questions (0.02 seconds). The
response time is 1.30 seconds, meaning that Chat-
bot4QR can responsively start interacting with the
user after receiving a query. After the interaction, the
question recommendation list can be produced
within 0.02 seconds. These results demonstrate the
efficiency of Chatbot4QR.

� The time spent by WE on question retrieval is 49.96
seconds per query, which is high because WE meas-
ures the semantic similarities between a query and
the 1,880,269 SO questions in our repository. In con-
trast, the two-phase question retrieval approach
used in Chatbot4QR is scalable. The reason is that
the first phase uses Lucene, which is efficient to

handle a large-scale repository, as shown in Table 16;
and by fixing the parameter N to a relatively large
value (e.g., 10,000 in this work), the time cost of the
second phase is stable.

It is worth to mention that the average time spent on the
interaction with our chatbot for a query is 42 seconds. For a
few queries, some participants took 2-3 minutes because
they needed to search for unfamiliar technical terms asked in
the CQs online. As confirmed by the participants, the amount of
time spent on the interaction is practically acceptable since the feed-
back to CQs can contribute to more relevant SO questions and
reduce the time required for the manual examination of undesirable
questions. Although the quality of retrieved questions relies
on the user’s feedback to CQs, Chatbot4QR does not require
the user to answer every CQ. The amount of the interaction
time depends on (1) the user’s programming experience and
(2) whether the user wants to search for unfamiliar technical
terms online, in order to provide more precise feedback to
CQs and obtainmore relevant questions.

Chatbot4QR takes approximately 1.30 seconds to respond to a
user after the user submits a query and 0.02 seconds to produce
the SO question recommendation list after interacting with the
user, indicating that Chatbot4QR is efficient for practical uses.

5.5 RQ5: Can Chatbot4QRHelp Obtain Better
Results Than UsingWeb Search Engines Alone?

Motivation. In practice, developers often use the SO search
engine and general-purpose search engines (e.g., Google) to
look for desired information [13], [40]. To further validate
the effectiveness of Chatbot4QR, we investigate whether
Chatbot4QR can help users obtain better results than using
Web search engines (including the SO search engine, Goo-
gle, etc.) alone. Here, a result refers to a SO question or any
other resources returned by Web search engines, e.g., a blog
or a tutorial.

Approach. We conducted four user studies (i.e., the user
studies 2, 4, 5, and 6 shown in Fig. 5) for answering RQ5.
Before the interaction with Chatbot4QR, we asked the 20
participants in PG1 and PG2 to obtain the top ten results
using Web search engines of their choices for each allocated
query. The participants can modify a query according to the
returned results until they are satisfied with the results
(excluding the SO question whose title is the same as the
original query) listed in a webpage. For each query, we
asked the participants to record the final query and the top
ten results in the returned webpage. After interacting with
Chatbot4QR, the participants can obtain new results for a
query using Web search engines by reformulating the query

TABLE 16
Time Costs of Three Approaches

Approach Offline Processing Online Question Retrieval

Lucene 8.52h 0.02s

WE 7.38h 49.96s

Chatbot4QR 91.15h
Response: 1.30s

Interaction: � 42s
Recommendation: 0.02s
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with interesting technical terms in their feedback to the
CQs. Take the query Q18 shown in Table 11 as an example,
the participant P16 can reformulate Q18 by adding some
technical terms, e.g., ‘node.js’, in his/her positive feedback.
Then, the participants evaluated the relevance of the two
kinds of Web search results. Finally, the participants chose
the preferred/best results for each allocated query from the
three kinds of results: the top ten SO questions retrieved by
Chatbot4QR and the two top ten Web search results. After
the user studies, we interviewed the participants to get their
opinions on the value of Chatbot4QR.

For each participant, we measured the performance of
the following three top ten results for each allocated query:

� WS: the top ten results obtained using Web search
engines before the interaction with Chatbot4QR.

� WS+IQR: the top ten results obtained using Web
search engines after the interactionwith Chatbot4QR.

� Best: the best results chosen by the participant.
We viewed WS, WS+IQR, and Best as three retrieval

approaches. For a specific Pre@k or NDCG@k metric, we
measured the overall performance of each approach as
the average performance evaluated by the 20 partici-
pants. Moreover, we measured the improvement degrees
and the maximum significant ratios of Best over WS and
WS+IQR. The detailed measurement process can refer to
Section 5.3.

Results. Table 17 presents the overall performance of WS,
WS+IQR, and Best, as well as the improvement degrees and

the maximum significant ratios of Best over WS and WS
+IQR. From the table, we have the following findings:

� Best outperforms WS and WS+IQR in terms of both
Pre@k and NDCG@k with an improvement of at
least 22.4 and 16.9 percent, respectively. The signifi-
cant ratios of Best over WS are all higher than 80 per-
cent, indicating that the improvement of Best over
WS is statistically significant for at least 16 of the 20
participants. This result shows that more desired
results are obtained by the participants after interact-
ing with Chatbot4QR than directly using Web search
engines.

� WS+IQR is slightly better than WS. This means that
for some queries, the participants obtained better
results using Web search engines again by reformu-
lating the queries using information that they
learned from the interaction with our chatbot.

We counted the numbers of queries that achieve the best
results by WS, WS+IQR, and Chatbot4QR for each partici-
pant, as shown in Fig. 9. From the figure, we have the fol-
lowing findings:

� For 12-22 of the 25 (i.e., 48-88 percent) assigned
queries, the participants preferred the results obtained
by Chatbot4QR or WS+IQR. For 16 participants
(except P6, P8, P13, and P21), Chatbot4QR achieves
the best results for the largest number of queries.
Moreover, there are 1-7 queries whose best results are

TABLE 17
Evaluation of the Results Obtained Using Web Search Engines Before/After Interacting With Chatbot4QR

Pre@1 Pre@5 Pre@10 NDCG@1 NDCG@5 NDCG@10

WS 0.634 0.483 0.401 0.532 0.500 0.502
WS+IQR 0.664 0.524 0.433 0.555 0.528 0.531
Best 0.900 0.725 0.585 0.798 0.746 0.749
ImpD(%) of Best over WS 22.4 29.4 26.9 27.5 26.9 29.8
(p, SigR (%)) of Best over WS (0.05, 80.0) (0.05, 100.0) (0.05, 90.0) (0.05, 90.0) (0.01, 100.0) (0.01, 100.0)
ImpD(%) of Best over WS+IQR 16.9 19.3 17.3 22.3 20.0 22.5
(p, SigR (%)) of Best over WS+IQR (0.05, 70.0) (0.05, 95.0) (0.05, 85.0) (0.05, 85.0) (0.01, 100.0) (0.05, 100.0)

“ImpD” is the improvement degree. “(p, SigR)” are the maximum significant ratio and the corresponding p-value.

Fig. 9. The numbers of queries that achieve the best results usingWS,WS+IQR, and Chatbot4QR by 20 participants.
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obtained by WS+IQR for 17 participants (except P7,
P22, and P24). For example, for the query Q22, the par-
ticipant P3 reformulated it by adding the feedback
‘mysql’ given to the CQ “I want to know whether you are
using a database, e.g., mysql or mongodb. Can you provide
it?”, which contributes to the best results retrieved by
Google. All these results are consistent with the overall
performance shown in Table 17, which further demon-
strate that for a considerable number of queries, Chat-
bot4QR helps the participants obtain better results
than usingWeb search engines alone.

� For each of the two participant groups PG1 (=P6-P15)
and PG2 (=P16-P25), there are notable differences
among the participants with respect to the numbers
of queries whose best results are obtained byWS,WS
+IQR, and Chatbot4QR. By interviewing the partici-
pants, we found that the differences are mainly
caused by the participants’ different preferences of
techniques and programming experience. For exam-
ple, for the query Q36, the participants P23 and P24
preferred Java while P25 preferred Python. Before
using Chatbot4QR, P24 reformulated the query by
adding ‘jsoup’ [41] (a Java HTML parser) while P23
simply added ’java’. Consequently, they obtained dif-
ferent results for Q36.

� For all the 20 participants, WS achieves the best
results for 3-13 queries. We found that most of those
queries are relatively simple and have specified tech-
nical terms, e.g., Q1 and Q7. The result shows the
good performance of Web search engines when the
query is clearly specified. Although Chatbot4QR can-
not achieve the best results for some queries, all the partici-
pants expressed their willingness to use our chatbot as a
complement to Web search engines.

Moreover, we examined the query reformulation records
of the participants by leveraging the final queries that they
used for obtaining the results of WS and WS+IQR. Table 18
presents the queries according to the number of participants
who had reformulated them. We observe that 24 (= 3+ 4 + 8
+ 9) queries were reformulated by 5-8 participants, while 11
(= 3 + 2 + 6) queries were reformulated by 0-2 participants.
We further analyzed the participants’ feedback to CQs used
in their reformulated queries. Table 19 lists the statistics of
the technical terms added to five frequently reformulated
queries and five less frequently reformulated queries. The
number in a parenthesis indicates the frequency of the cor-
responding technical term used to reformulate a query. As

shown in Table 19, the queries reformulated by more partic-
ipants often involve multiple techniques. For example, the
technical terms used to reformulate the query Q26 include
three programming languages {‘java’, ‘c’, ‘python 3’}, one
operating system {‘linux’}, and one library {‘collections’}.

For 12-22 of the 25 (i.e., 48 percent-88 percent) assigned
queries, the participants preferred the results obtained by Chat-
bot4QR or using Web search engines with the queries reformu-
lated after interacting with Chatbot4QR. This demonstrates
that Chatbot4QR can help obtain better results than using
Web search engines alone. During the interview with the par-
ticipants, all the participants expressed their willingness to
use Chatbot4QR as a complement to Web search engines.

6 DISCUSSION

6.1 Why Chatbot4QR Can Help Users Retrieve
Better SO Questions and Web Search Results?

Tables 13 and 14 show that Chatbot4QR significantly out-
perfoms the two popular retrieval approaches: WE and
Lucene, as well as their variants combined with three query
expansion approaches: WN, QECK, and TR. Moreover, WE
is better than Lucene because WE can bridge the lexical gaps
between SO questions and queries while Lucene cannot. The
variants perform worse than WE and Lucene due to the fact
that WN, QECK, and TR may introduce noise terms and
decrease the quality of retrieved SO questions. As an exam-
ple, for the query Q9, i.e., “how to encrypt data using AES in
Java”, the terms expanded by QECK are: {ruby, iv, php,
openssl, algorithm, i.e.fast, disk, byte, decrypt}. Since Q9 has a
programming language ‘java’, the two terms ‘php’ and ‘ruby’
may probably be unexpected by users.

Based on the above analysis, Chatbot4QR uses WE as the
question retrieval model. However, the performance of WE
is limited by the quality of queries. When a query is vague,
e.g., missing important technical details, WE cannot retrieve
accurate questions. As users may have varied technical
background, Chatbot4QR uses an interactive approach to
assisting users in refining queries by asking CQs that are
generated according to the missing technical details in a
query. The user’s feedback to CQs can accurately represent
their technical requirements on the queries and contribute
to retrieving relevant SO questions.

TABLE 18
The Numbers of Participants Who Reformulated the 50 Queries

Query Nos. #Participants Who
Reformulated the Queries

2, 26, 45 8
13, 20, 41, 48 7
1, 21, 22, 25, 32, 37, 39, 46 6
3, 8, 12, 18, 19, 27, 28, 31, 36 5
5, 10, 15, 17, 29, 33, 42, 50 4
6, 14, 34, 35, 38, 40, 49 3
7, 11, 16, 24, 30, 44 2
23, 43 1
4, 9, 47 0

TABLE 19
Technical Terms Used to Reformulate Ten Queries

Query No. Technical Terms Used to Reformulate the Query

2 numpy(3), python(2), matplotlib(2), python 3.x(1)
26 java(3), collections(1), c(1), python 3(1), linux(1)
45 pandas(7), python(1)
13 python(2), numpy(2), java(1), c#(1), python 3.x(1)
48 regex(4), python 3.x(1), jquery(1), django(1)
7 java(2)
11 java(2)
16 xml(1), html(1)
23 python 3(1)
43 neural-network(1)

Each number in a parenthesis is the frequency of the technical term used to
reformulate the corresponding query.
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Table 17 and Fig. 9 show that Chatbot4QR helps the par-
ticipants obtain much better results than using Web search
engines alone for at least 48 percent of their allocated
queries. The SO questions retrieved by Chatbot4QR were
chosen as the best results by 16 of the 20 participants for the
largest proportion of queries. For some queries, the partici-
pants obtained the best results using Web search engines by
reformulating the queries with their feedback to CQs. These
results demonstrate that Chatbot4QR can (1) retrieve
desired SO questions for users after helping them refine the
queries and (2) help users better understand their queries
and obtain better results using Web search engines.

6.2 Why Not Use A Constant Chatbot?

Chatbot4QR is designed to generate different CQs for
queries based on the existing technical details mentioned in
a query and an initial set of similar SO questions retrieved
for the query. Is this design necessary? Can we use a constant
chatbot that always asks several fixed CQs for queries? To
answer these questions, we implemented a constant chat-
bot, denoted as ConstantBot, which focuses on asking for
four types of technical details given a query, namely the
programming language, framework, and the versions of the
two technique types. More specifically, ConstantBot first
asks a CQ “What programming language does your problem
refer to?”. If a user provides a programming language, e.g.,
Java, then ConstantBot further asks for the version of Java
using a CQ “Can you specify the version of java?”. Then, Con-
stantBot asks for a framework using “If you are using a frame-
work, please specify:”, as well as the version of a possible
framework given by the user.

We asked the 20 participants in PG1 and PG2 to evaluate
the CQs asked by ConstantBot for each allocated query. Sim-
ilar to the user study 3 conducted in Section 5.2, the partici-
pants rated each CQ by five grades 0-4 (as defined in
Section 5.1) and gave feedback to the useful CQs. After the
evaluation, we asked the participants to provide some com-
ments about ConstantBot. Then, we retrieved the top ten
similar SO questions using Eq. (1) by leveraging each partic-
ipant’s feedback to a query. The participants evaluated the
relevance of the questions that were not evaluated before by
five grades 0-4, as defined in Section 5.1.

Table 20 presents the average number of CQs and the
average ratio of useful CQs that are asked by ConstantBot for
the 50 queries. Table 21 presents the Pre@k and NDCG@k
performance of the retrieved SO questions, as well as the
improvement degrees and the maximum significant ratios of
Chatbot4QR over ConstantBot. From Table 20, we find that
on average ConstantBot asked 2.7 CQs for a query; and the
ratio of useful CQs is 44.6 percent, which is much lower than
that of Chatbot4QR (i.e., 60.8 percent). By analyzing the eval-
uation results of the 50 queries, there are 11 queries (i.e., Q4,

Q9, Q17, Q23, Q27, Q29, Q32, Q33, Q39, Q46, and Q50) that
have no useful CQ as evaluated by the participants. The 11
queries contain a specific programming language, e.g., Java
in Q4; and the participants are not interested in looking for a
framework. Two major comments about ConstantBot given
by the participants are: (1) ConstantBot still asks for a pro-
gramming language when a query already has a program-
ming language; and (2) unlike Chatbot4QR, ConstantBot
cannot help recognize some technical details that are useful
but missed in a query, e.g., databases and libraries. From
Table 21, we find that in terms of Pre@k and NDCG@k (k = 1
and 5) metrics, Chatbot4QR improves ConstantBot by 9.4-
12.3 percent; and the improvement is statistically significant
for 20-55 percent participants. Based on the analysis results,
we can conclude that it is not appropriate to use a constant
chatbot for the interactive query refinement and question
retrieval.

6.3 Learning Effect From Interacting With
Chatbot4QR

In Section 5.5, considering that the participants can learn to
recognize some missing technical details in queries from the
interaction with Chatbot4QR, we first asked the participants
to search results for queries before interacting with Chat-
bot4QR. This can avoid the impact of the participants’ learn-
ing effect on their Web search results using the original
queries.

It is worth mentioning that the learning effect is good for
users in practice. After interacting with Chatbot4QR for sev-
eral times, users, especially the novices, can learn to formu-
late high-quality queries with necessary technical details for
retrieving questions from SO or other resources from gen-
eral-purpose Web search engines (e.g., Google). Because of
the learning effect, users can ask better questions in Q&A
sites by describing their problems with a clear technical con-
text, which can lead to better answers. Moreover, there are
too many techniques (e.g., libraries) available on the Web;
and it is difficult for users, even for experienced developers,
to know every possible technique. Chatbot4QR may help
users, including both novices and experienced developers,
discover unknown or better techniques for some program-
ming tasks.

6.4 Application Scenarios of Chatbot4QR

Chatbot4QR can be applied in the following two scenarios:

� Chatbot4QR can be implemented as a browser plugin.
When a user inputs a query toWeb search engines, the
plugin detects the missing technical details in the

TABLE 20
The Average Numbers of CQs and the Average Ratios of
Useful CQs That are Generated by Chatbot4QR and

ConstantBot for the 50 Queries

Approach Avg. #CQs Avg. Ratio of Useful CQs

ConstantBot 2.7 0.446
Chatbot4QR 5.1 0.608

TABLE 21
Evaluation of the SO Questions Retrieved by Chatbot4QR and
ConstantBot; and the Improvement Degrees and the Maximum

Significant Ratios of Chatbot4QR Over ConstantBot

Pre@1 Pre@5 NDCG@1 NDCG@5

ConstantBot 0.766 0.596 0.687 0.661
Chatbot4QR 0.838 0.670 0.765 0.731
ImpD(%) 9.4% 12.3% 11.3% 10.5%
(p, SigR(%)) (0.05,

20.0%)
(0.05,
55.0%)

(0.05,
30.0%)

(0.05,
35.0%)

1206 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 16,2022 at 13:47:26 UTC from IEEE Xplore.  Restrictions apply. 



query. If there are missing technical details, the plugin
informs the user that the query has a quality issue.
Then, the user can choose to interact with our chatbot.
After the interaction, our chatbot recommends the top
ten similar SO questions. Moreover, the user can use
their feedback to CQs to reformulate the query for
Web search.

� In the literature, many technical tasks, such as answer
summarization [6] and API recommendation [5] rely
on the quality of the top similar SO questions
retrieved for queries. Chatbot4QR could be used to
improve the performance of question retrieval, which
will contribute to better results of the tasks.

6.5 Participants’ Comments About Chatbot4QR

In the experiments, we encouraged the participants to pro-
vide comments about Chatbot4QR. We summarize several
major positive and negative aspects of the comments.

� Positive Comments

PC1. The chatbot is good! It can really help me figure out
some important technical details missed in the queries.
And, the final retrieved results are more satisfactory.

PC2. Using the generated CQs to refine queries is more
straightforward and systematic than manually picking
up relevant information scents in the search results.

PC3. The chatbot is flexible and fast, and most of the asked
CQs are really closely related to a query.

PC4. Although it may ask some unfamiliar techniques for
me, it still helps me get a better understanding of the
query as well as some other possibly useful libraries.
I’d like to try it later.

� Negative Comments

NC1. Some CQs are unnecessary because the asked informa-
tion can be inferred from some keywords in the query.
For example, the CQ “What programming language,
e.g., java or c#, does your problem refer to?” asked for
the query Q35 “Using LINQ to extract ints from a list
of strings” is useless because ‘LINQ’ is based on C#.

NC2. There are a bit too many CQs for some queries.
Although the chatbot allows me to skip and terminate,
I suggest that you can limit the number of CQs for a
query, e.g., five.

According to the comments, Chatbot4QR can assist the
participants in refining queries and retrieving more desired
results (PC1 and PC2). Additionally, Chatbot4QR can help
the participants better understand the queries and discover
some possibly useful techniques (PC4). The efficiency of
Chatbot4QR is also acceptable (PC3). However, there still
remain some issues. For example, Chatbot4QR cannot filter
unnecessary CQs based on the existing information in
queries (NC1). To solve this issue, we need to mine the rela-
tionships among techniques, e.g., what frameworks and
libraries are related to a specific programming language.
Moreover, the participants suggest us to limit the number of
CQs asked for a query (NC2).

To validate the suggestion in NC2, we generated a list of
the CQs evaluated by a participant for a query. The CQ list
was ranked by the orders of the CQs prompted to the

participant during the interaction with Chatbot4QR. We
counted the number of useful CQs in the top-k CQs of the
list, and measured the ratio of useful CQs in the top-k to all
useful CQs that are evaluated by the participant for the
query. We set k from 1 to 10 (the maximum number of CQs
in all CQ lists). For each k, we measured the average ratio of
useful CQs in all CQ lists, as shown in Fig. 10. On average,
96.8 percent of the useful CQs of a query are contained in the
top five CQs prompted to a participant, indicating that it is
suitable to limit the number of CQs asked for a query as 5.

6.6 Error Analysis of Chatbot4QR

Although it has been validated that Chatbot4QR can effec-
tively generate useful CQs and recommend relevant SO
questions for queries, we find two error scenarios of Chat-
bot4QR from the participants’ evaluation results as follows.

1. As reported in the comment NC1, Chatbot4QR may
generate wrong CQs for a query. Despite the wrong
CQasked for the queryQ35 inNC1, theCQ“What pro-
gramming language, e.g., javascript or python, does your
problem refer to?” generated for the query Q18 (see
Table 11) is also useless since the technical term ‘NPM’
inQ18 is highly related to JavaScript. During the inter-
action with a participant, Chatbot4QR cannot dynam-
ically filter unsuitable CQs or technical terms
appearing in CQs based on the participant’s feedback.
For example, for the query Q42 shown in Table 11,
after the participant P7 answered the CQ “What pro-
gramming language, e.g., java or c#, does your problem
refer to?” with Python, the subsequent CQ “Are you
using .net? (y/n), or some other frameworks.” became
unsuitable as ‘.net’ is a C# framework. The CQ should
be revised by replacing ‘.net’ with a Python frame-
work appearing in the initial top-n similar questions
retrieved for Q42. If there is no such a Python frame-
work, the CQ can be removed. Through our analysis,
the errors are caused by the fact that Chatbot4QR cur-
rently has no knowledge about the relationships
between techniques, e.g., NPM is related to JavaScript
and .net is related to C#. In the future, we plan tomine
knowledge about the relationships among SO tags
and integrate the knowledge to Chatbot4QR.

2. Chatbot4QR may produce worse question recom-
mendation lists than the two-phase method for some

Fig. 10. The average ratios of useful CQs that are contained in the top-k
CQs prompted to the participants to all useful CQs for the 50 queries.
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queries. For example, for the query Q5 “How to insert
multiple rows into database using hibernate?”, the par-
ticipant P17 provided three kinds of positive feed-
back, i.e., {‘java 8’, ‘mysql’, ‘sql’}, to the CQs.
However, the final top ten SO questions refined by
incorporating the feedback are worse than the initial
top ten questions. Table 22 presents the initial and
the final top five questions retrieved for Q5, as well
as the relevance of the questions evaluated by P17.
By analyzing the results, the performance of the final
top five questions is decreased as some questions
(e.g., the question ‘23200729’) are irrelevant to the
query task, but they match all the feedback, and
therefore the rankings of such questions are over-
promoted. To correct such errors, our future work
will aim to optimize the weights of different types of
technical feedback in Eq. (1) according to their con-
tributions to the question retrieval (see Table 15).

6.7 Threats to Validity

Threats to internal validity relate to two aspects in this work:
(1) the errors in the implementation of Chatbot4QR and the
baseline approaches and (2) the participants’ bias during
the experiments.

As for the aspect (1), we carefully checked the implemen-
tation code of our Chatbot4QR prototype. Considering that
there could be noises in the tag assignments of SO ques-
tions, which may affect the CQ generation of Chatbot4QR,
we built the question repository by requiring that each
question has an accepted answer and a positive score. More-
over, we ensured that the experimental queries and their
duplicates were not included in the repository. Although
our experimental queries were built from the titles of SO
questions, it may not be a serious problem as it is a common
experimental setup used in previous work [5], [6], [8], [20],
[32], [33]. For the four baselines EVPI, Lucene, WE, and TR,
we directly used the open-source code. For the other two
baselines WN and QECK, we carefully re-implemented
them according to the details presented in the papers [8],
[12]. Therefore, there is little threat to the implementation of
the approaches.

As for the aspect (2), we recruited the participants who
are interested in our work and have 2-11 years of program-
ming experience. We adopted several strategies to mitigate
the participants’ bias in the steps that require manual
efforts. For the categorization of SO tags, we used two itera-
tions of a card sorting approach. Each iteration step was
independently conducted by the first two co-authors of the
paper; then they worked together with an invited postdoc
to discuss the disagreements to obtain the final results. We
asked the participants to search results for the queries using
Web search engines before interacting with Chatbot4QR, in
order to avoid the participants transferring the knowledge
learned from our chatbot to enhance the original queries
when they use Web search engines. Before evaluating CQs
in the user studies 1 and 3, we launched a video conference
with the participants to introduce our Chatbot4QR proto-
type, to ensure that they understood how to use the proto-
type for evaluation. In the video conference of the user
study 1, we also explained the relevance judgement of SO
questions to a query with a technical context. Moreover, at
the beginning of our user studies, we explained to the par-
ticipants about how to perform the user studies based on
the existing technical details in queries and/or their techni-
cal background. It is possible that the participants may have
difficulties in building the technical context for some
queries as they may not be interested in the problems. In
the future, we plan to develop Chatbot4QR as a plugin and
deploy the plugin in companies, such as Hengtian, to vali-
date whether Chatbot4QR can help developers retrieve bet-
ter SO questions or other resources for technical problems.

Threats to external validity relate to the generalizability of
experiment results. To alleviate this threat, we built a large-
scale repository of 1.88 million SO questions. To conduct
our user studies, we recruited 25 participants. Considering
that the user studies require significant manual efforts, we
built 50 experimental queries. The number of participants
and the number of experimental queries are close to the
existing user studies in the previous work [30], [32], [33],
[34], [35]. The 25 participants have different years of pro-
gramming experience and diverse familiar programming
languages, as shown in Table 5. The 50 experimental queries

TABLE 22
TwoKinds of the Top Five SOQuestions Retrieved for theQuery Q5; and the Relevance of Questions Evaluated by the Participant P17

Result Type
The Top Five SO Questions

Relevance
Question ID Question Title Question Tags

Initial

20045940 Inserting multiple rows in database java, database 4
47244614 Inserting Data in Multiple Tables in Hibernate java, hibernate, jpa 3
22553920 Insert into two tables in two different database java, spring, hibernate, jpa 2
39383049 How to insert data to multiple table at once in

hibernate using java
java, mysql, hibernate 3

22472292 How to insert new items with Hibernate? java, mysql, hibernate 2

Final

25485086 how to insert new row in hibernate framework? java, mysql, sql, hibernate 3
23200729 Records in DB are not one by one. Hibernate java, mysql, sql, hibernate 1
39383049 How to insert data to multiple table at once in

hibernate using java
java, mysql, hibernate 3

31583737 hibernate: how to select all rows in a table java, mysql, sql, hibernate, postgresql 2
22472292 How to insert new items with Hibernate? java, mysql, hibernate 2

“Initial” represents the top five questions retrieved using our two-phase method. “Final” represents the top five questions retrieved using Chatbot4QR by
leveraging P17’s feedback to the CQs of Q5.
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have diversity in the involved techniques, the complexity of
problems, and the quality of expression (i.e., whether there
are specified techniques or not), as explained in Section 4.2.
The diversity of participants and queries can help improve
the generalizability of our experiment results. In the future,
we plan to further reduce this threat by extending the user
studies with more participants and queries.

Threats to construct validity relate to the suitability of eval-
uation metrics. To reduce this threat, we used two popular
metrics: Pre@k and NDCG@k, which are widely used to
evaluate the ranking results in the fields of IR and software
engineering [5], [6], [31], [32], [33], [42].

7 RELATED WORK

Question Retrieval in SO. Question retrieval is a key step for
many knowledge search tasks in SO. A number of work
retrieves similar SO questions for queries by leveraging the
Lucene search engine [8] or word embedding techniques [3],
[5], [6], [11]. For example, Nie et al. [8] proposed a code
search approach by expanding queries with important key-
words extracted from relevant SO question-and-answer
pairs. Lucene is used for indexing and retrieving SO ques-
tion-and-answer pairs. Xu et al. [6] proposed an approach
named Answerbot to generating a summarized answer for a
query by extracting important sentences from the answers
of similar SO questions. It retrieves similar SO questions
using a word embedding-based approach. Huang et al. [5]
proposed an API recommendation approach named BIKER.
A word embedding-based approach is also used for retriev-
ing SO questions similar to a query. The recommended
APIs are extracted from the answers of the top ten similar
SO questions. The Lucene search engine is efficient but can-
not handle the lexical gaps between SO questions and
queries. Recently, the word embedding-based approach is
widely used to bridge the lexical gaps and can achieve bet-
ter performance. However, the existing work on question
retrieval rarely considers an important issue in practice that
the query can be inaccurately specified, which will lead to
undesireable questions.

We propose a novel question retrieval approach which
improves the word embedding-based approach in two
main aspects: (1) a two-phase question retrieval approach is
used to improve the efficiency by reducing the search space
using Lucene before applying the word embedding-based
approach; and (2) a chatbot is designed to interactively help
users refine queries by asking several CQs related to the
missing technical details in a query. The refined queries can
contribute to retrieving more relevant SO questions.

Tag Recommendation in SO. SO encourages users to attach
several (nomore than five) tags to a question, which can help
organize the tremendous amount of questions and facilitate
the question retrieval [43]. However, the large set of more
than 50 thousand SO tags imposes a huge burden for users to
select a few appropriate tags for a question. Much attention
has been paid to recommending relevant tags for SO ques-
tions [36], [37], [38], [43]. For example, Xia et al. [36] proposed
an approach called TagCombine to finding relevant tags by
composing three ranking components. Wang et al. [37] pro-
posed a tag recommendation system by using the labeled
Latent Dirichlet Allocation (LDA) modeling technique [44].

They analyzed the historical tag assignments and users of SO
questions and the original tags provided by users. Zhou et al.
[38] proposed a neural network approach to recommending
tags, which leverages both textual descriptions and tags of
SO questions.

Different from the tag recommendation (TR) work, our
work focuses on determining missing technical details in a
query based on the tags of similar SO questions. As evaluated
in Section 5.3, the existing TR approaches may not be suitable
for determining relevant tags for queries because of twomain
reasons. First, unlike a SO question that has a rich description
(including the title, original tags, and body), a query typically
consists of a few keywords, which makes it difficult to find
relevant tags precisely. Second, even for the same query, dif-
ferent users may have personalized preferences of tags con-
sidering their different technical background (e.g., the
preferred programming languages) or programming context
(e.g., the platform the software is developed for). To address
these challenging issues, given a query, we use a chatbot to
interact with the user by asking several CQs with a candidate
set of relevant tags extracted from the top-n similar SO ques-
tions, allowing the user to tell what tags theywant.

Query Reformulation. The quality of queries has an great
impact on the performance of IR systems. However, it is not
an easy task to formulate a good query, which largely
depends on the user’s experience and their knowledge about
the IR system [45]. A lot of work has been proposed to auto-
matically reformulate queries by expanding them with rele-
vant terms extracted from lexical databases (e.g.,WordNet) or
similar resources [8], [12], [15], [46], [47]. For example, Lu et al.
[12] proposed to expand a querywith the synonyms inWord-
Net for code search. Nie et al. [8] also proposed a code search
approach by expanding queries with important keywords
extracted from relevant SO question-and-answer pairs. A
major limitation of automatic query expansion approaches is
that there can be unexpected terms added to the query with-
out user involvement, whichwill affect the quality of results.

To overcome the limitation, several work has recently
been proposed to interactively help users refine queries [31],
[48], [49]. For example, Zou et al. [48] proposed a personal-
ized Web service recommendation approach, which can
assist users in refining their requirements. The approach is
based on a process knowledge base built from the available
online resources. Guo et al. [49] proposed an interactive
image search approach which uses a reinforcement learning
model to capture the user’s feedback on their desired image.
The approach relies on the predefined feature set of images.
It has been demonstrated that these interactive query refine-
ment approaches can help find desired results for users. In
contrast to these work, we propose an interactive query
refinement approach to assisting users in clarifying the
missing technical details in queries, in order to improve the
performance of question retrieval from technical Q&A sites.
For this purpose, we build two technical knowledge bases,
i.e., the categorization and multiple version-frequency infor-
mation of SO tags.

8 CONCLUSION AND FUTURE WORK

Question retrieval plays an important role in acquiring
knowledge from technical Q&A sites, e.g., SO. The existing
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search engines provided in the Q&A sites and the state-of-
the-art question retrieval approaches are insufficient to
retrieve desired questions for users when the query is inac-
curately specified. In this paper, we propose a chatbot,
named Chatbot4QR, to interactively help users refine their
queries for question retrieval. Chatbot4QR can accurately
detect missing technical details in a query and interacts
with the user by asking several CQs. The user’s feedback to
CQs is used to retrieve more relevant SO questions. The
evaluation results of six user studies demonstrate the effec-
tiveness and efficiency of Chatbot4QR.

To the best of our knowledge, it is the first work on the
interactive query refinement for technical question retrieval.
However, the current Chatbot4QR is still in infancy with
some limited capability. In the current stage, Chatbot4QR
focuses on helping users clarify 20 major types of techniques
(see Table 1) and the versions of the techniques missed in a
query. In the future, we will improve Chatbot4QR in two
main directions: (1) we plan to use the possible solutions
discussed in Section 6.6; and (2) we will mine knowledge on
the differences (e.g., the frequency of use and performance)
between the similar techniques (e.g., HashMap is more effi-
cient than Hashtable [6]), so that Chatbot4QR could suggest
better techniques when users intend to search for a less fre-
quently used technique or an obsolete technique (e.g.,
Hashtable). Moreover, we plan to implement Chatbot4QR
as a browser plugin to assist users in searching results for
technical problems. When a user inputs a query to a Web
search engine (e.g., the SO search engine or Google), the
plugin can notify the user if there are missing technical
details in the query. The user can interact with our chatbot
to obtain the top ten similar SO questions and get insights
for reformulating the query to search on the Web.
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